# **Success for English Language Learners 2-8** Solve Absolute-Value Equations and Inequalities

#### **Steps for Success**

**Step I** To help students master solving absolute-value equations and inequalities, consider using the following steps.

- Have students discuss the definitions of the vocabulary words *disjunction, conjunction,* and *absolute value.* Have them compare the English words and definitions to those in their native languages.
- Have students create word webs for the prefixes *con-* and *dis-*. Students can add meanings, illustrations, and words with the same prefix to each web to reinforce the meanings.

**Step II** In order for students to grasp the important concepts of the lesson, use the following procedures.

- Discuss different meanings of *absolute*, and compare them to how the word is used in this lesson. Allow students to make notes or illustrations regarding the word *absolute* to help them relate the word to mathematics.
- Students may be familiar with the word *compound* from other subject areas. Because *compound* implies combined, students may not recognize *or* as a compound inequality term. Reinforce both terms that create compound inequalities.

**Step III** Ask English Language Learners to complete the worksheet for this lesson.

- Point out that Example 1A in the student textbook is supported by Problem 1 on the worksheet. Help students recognize that there is not one answer, but a solutions set, or group.
- Point out that Example 3A in the student textbook is supported by Problem 2 on the worksheet. Help students understand that absolute-value inequalities form compound inequalities.
- Think and Discuss supports the problems on the worksheet.

## **Making Connections**

• Use a Language Arts textbook or reference book to show students that *and* and *or* are conjunctions that bring two other parts of speech together.

| Name | Date | Class |
|------|------|-------|
|      |      |       |

# **Success for English Language Learners 2-8** Solve Absolute-Value Equations and Inequalities

#### **Problem 1**

Solve the compound inequality. Then graph the solution set.



#### Problem 2

Solve the inequality. Then graph the solution set.



#### **Think and Discuss**

- 1. What would be different if Problem 1 said and instead of or?
- 2. How would 3A be written as a compound inequality?

# Answer Key continued

#### Lesson 2-5

- **1.** If the sign is "or equal to," the boundary line is included.
- 2. The boundary would be vertical.

#### Lesson 2-6

**1.** 1f(x) = 2x - 1

2. It would be a compression.

#### Lesson 2-7

- 1. It would have a greater negative slope.
- 2. Closer to -1.

## Lesson 2-8

**1.** There would be no solution.

**2.** 2x + 1 > 5 OR 2x + 1 < -5

#### Lesson 2-9

- 1. The vertex should be 2 units up.
- **2.** The slope would increase times 30 and the vertex would be (0, -60).

## CHAPTER 3

## Lesson 3-1

- 1. The lines will intersect at (2, 4).
- **2.** One solution, (2, 4).
- 3. The slopes are equal.

## Lesson 3-2

- 1. I should get the same answer.
- **2.** Because only one point solves both equations simultaneously.
- **3.** Because equations are added together to eliminate a variable.

## Lesson 3-3

- 1. Quadrants II, III, and IV
- **2.** No, because one of the boundary lines is not included in the region.
- 3. an obtuse angle

## Lesson 3-4

- **1.** It does not maximize the objective function.
- If the last constraint is removed, the feasible region has vertices at (0, 0), (0, 300), and (500, 0). *C* is maximized at (500, 0).

## Lesson 3-5

- **1.** (4, 0, 0), (0, 3, 0), and (0, 0, 6)
- 2. The equation says that 3 times the *x*-coordinate plus 4 times the *y*-coordinate plus 2 times the *z*-coordinate equals 12 for any point on the plane.

## Lesson 3-6

- 1. That is (*z*, *x*, *y*), which is different from (*x*, *y*, *z*) because the coordinates are ordered.
- **2.** It is independent because the system has one solution only.

# **CHAPTER 4**

## Lesson 4-1

- 1. The entry at  $c_{22}$  is 0.0075 and it is the cost per square inch of a 4-inch paper box.
- **2.** *C*<sub>32</sub>
- **3.** 4 × 2

## Lesson 4-2

- 1. Because the number of columns in the first matrix is the same as the number of rows in the second matrix.
- **2.** The matrices of the products have different dimensions.

## Lesson 4-3

- **1.** The coordinates in the product matrix are those of the reflected image of *JKL*.
- 2. It is reflected across the *y*-axis.