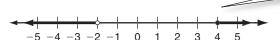
two parts.

LESSON Reteach

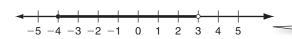

2-8 Solving Absolute-Value Equations and Inequalities

To solve compound inequalities, solve both inequalities. Then graph.

Solve x + 6 < 4 or $2x \ge 8$.

$$x + 6 < 4$$

$$x < -2$$
 OR $x \ge 4$



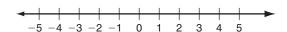
Solve x - 2 < 1 and $-3x \le 12$.

$$x - 2 < 1$$
 AND $-3x \le 12$

$$x < 3$$
 AND $x \ge -4$

$$\chi \geq -2$$

Reverse the inequality when


dividing by a negative number.

This inequality uses OR. Its graph has

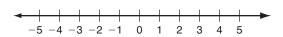
This inequality uses AND. Its graph has one part.

Solve and graph each compound inequality.

1.
$$x + 3 < 2$$
 or $\frac{1}{2}x > 1$

3.
$$x - 4 < -7$$
 or $-4x \le 4$


5.
$$3x < 12$$
 and $-3x < 12$


2.
$$-6x \le 18$$
 and $x + 6 \le 6$

4.
$$-3x \le 6$$
 and $x + 2 < 5$

_____ AND _____

6.
$$\frac{1}{2}x - 2 \le 0$$
 or $2 - \frac{1}{2}x \le -1$

Reteach

LESSON Solving Absolute-Value Equations and Inequalities **2-8** (continued)

Solving absolute-value inequalities is like solving compound inequalities.

Solve: $ x < 2$	Solve: $ x \le 2$
Solution: $-2 < x < 2$	Solution: $-2 \le x \le 2$
Solve: $ x > 2$	Solve: $ x \ge 2$
Solution: $x < -2$ OB $x > 2$	Solution: $x \le -2$ OB $x \ge 2$

Remember: $|x| = x \text{ if } x \ge 0$

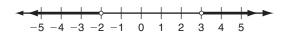
Solve $|x-2| \leq 3$.

$$-3 \le x - 2 \le 3 \qquad \overline{}$$

Use the solutions from the table to write the inequalities

$$-3 + 2 \le x - 2 + 2 \le 3 + 2$$
 Add 2.
 $-1 \le x \le 5$ Simplify.

Solve |2x - 1| > 5.


$$2x - 1 > 5$$
 OR $2x - 1 < -5$

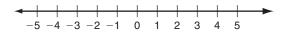
$$2x > 6$$
 OR $2x < -4$

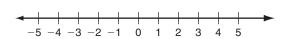
Add 1.

$$x > 3$$
 OR $x < -2$

Divide by 2.

Solve and graph.


5.
$$|x+3| < 2$$


6.
$$|2x + 1| \ge 3$$

$$2x + 1 \ge$$
 OR $2x + 1 \le$

$$2x \ge$$
 OR $2x \le$ ____

$$x \ge$$
 OR $x \le$ ____

Practice A

2-3 Solving Absolute-Value Equations and Inequalities

Solve each compound inequality. Then graph the solution.

2.
$$x - 13 \ge -15 \text{ or } 4x < -12$$

$$x \ge -2$$
 or $x < -3$

3.
$$4x \ge -16$$
 and $x + 1 \le 0$

$$x \ge -4$$
 and $x \le -1$

Solve each equation.

4.
$$|3x| = 36$$

5.
$$|x| - 7 = -$$

5.
$$|x| - 7 = -1$$
 6. $|8x| - 13 = 11$

$$3x = \frac{36}{\text{ or } 3x} = \frac{-36}{-12}$$

 $x = \frac{12}{12} \text{ or } x = \frac{-12}{12}$

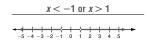
$$x = 6 \text{ or } x = -6$$

$$x = 6 \text{ or } x = -6$$
 $x = 3 \text{ or } x = -3$

Determine whether each inequality is a conjunction or a disjunction and whether you would use $\ensuremath{\mathit{and}}$ or $\ensuremath{\mathit{or}}$.

7.
$$|4x| + 10$$

7.
$$|4x| + 10 > 30$$
 8. $|5x + 11| < 21$ 9. $3|x - 1| \ge 6$


9.
$$3|x-1| \ge 6$$

Solve each inequality. Then graph the solution.

10.
$$\frac{|3x-1|}{2} \le 3$$

11.
$$5|2x| > 10$$

$$\frac{-\frac{5}{3} \le x \le \frac{1}{3}}{-5 - 4 - 3 - 2 - 1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5}$$

12. Phil told his friend that if you subtract 12 from his age and then take the absolute value, you'll get an answer of 3. How old is Phil?

Practice B

2-3 Solving Absolute-Value Equations and Inequalities

Solve each equation.

1.
$$|2x + 1| = 7$$
 2. $|-7x| = 28$

3.
$$3|3x|-7=2$$

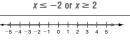
$$x = 3 \text{ or } x = -4$$
 $x = \pm 4$

$$x = \pm i$$

4.
$$|2x-5|=5$$
 5. $2|x+1|=14$ **6.** $|4-x|+2=9$

5.
$$2|x+1| = 14$$

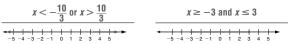
6. $|4-x| + 2 = 9$
 $x = 6 \text{ or } x = -8$
 $x = -3 \text{ or } x = 11$


Solve each inequality or compound inequality. Then graph the solution.

7.
$$-4x + 2 > -10$$
 and $5x - 12 < 8$ 8. $3x - 4 \ge 8$ or $-x + 12 > 16$

$$x \ge 4 \text{ or } x < -4$$

9.
$$|9x| \ge 18$$


10.
$$|3x - 7| > 8$$

11.
$$|0.3x| > 1$$

13. Any measurement is accurate within ± 0.5 of the measurement unit. For example, if you measure your pencil to the nearest inch, your measurement could be 0.5 inch too long or 0.5 inch too short. Write an absolute-value inequality that shows the maximum and minimum actual measure of a nail measured to be 4.4 centimeters to the nearest 0.1 centimeter.

$$|m-4.4| \le 0.05$$

Copyright © by Holt, Rinehart and Winston. All rights reserved.

59

Holt Algebra 2

Copyright © by Holt, Rinehart and Winston. All rights reserved.

60

Holt Algebra 2

Practice C 2-8 Solving Absolute-Value Equations and Inequalities

Solve each equation.

1.
$$|2x - 3| = 15$$

2.
$$\frac{1}{2}|x+9| =$$

2.
$$\frac{1}{2}|x+9|=1$$
 3. $11-|4-x|=4$

$$x = -6 \text{ or } x = 9$$
 $x = -11 \text{ or } x = -7$ $x = -3 \text{ or } x = 11$

$$x = -11 \text{ or } x = -7$$

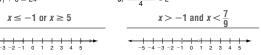
$$x = -3 \text{ or } x = 11$$

Solve and graph.

4.
$$5(7-2x) < 40$$
 and $5x + 2 < 12$ **5.** $\frac{7x-10}{6} \le 3$ or $3x + 2 > 5x - 8$

5.
$$\frac{7x-10}{6} \le 3 \text{ or } 3x+2 > 5x$$

6.
$$\left| \frac{4x-1}{6} \right| \ge 1$$


$$x \le -\frac{5}{4} \text{ or } x \ge \frac{7}{4}$$

$$x < -\frac{2}{5} \text{ or } x > \frac{6}{5}$$

$$-5 - 4 - 3 - 2 - 1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$
8. $2|3x - 6| + 6 \ge 24$

7. -3|5x-2|<-12

$$x \le -1 \text{ or } x \ge 5$$

Solve.

10. Ben says that there is no solution for this absolute-value inequality. Is he correct? If not, solve the inequality. Explain how you know you are correct. $32 + \frac{|x-7|}{13} < 7$

$$32 + \frac{|x-7|}{12} < 1$$

Possible answer: Ben is correct. There is no solution. When the inequality is simplified, the result is an inequality that sets the absolute value of an expression less than a negative number. Since absolute values are

always positive, this is never true.

Reteach 2-8 Solving Absolute-Value Equations and Inequalities

To solve compound inequalities, solve both inequalities. Then graph. Solve x + 6 < 4 or 2x > 8

x + 6 < 4 OR $2x \ge 8$

Solve x - 2 < 1 and $-3x \le 12$. x-2 < 1 AND $-3x \le 12$ x < 3 AND $x \ge -4$

Reverse the inequality when dividing by a negative number. This inequality uses AND. Its graph has one part.

This inequality uses OR. Its graph has

Solve and graph each compound inequality.

1.
$$x + 3 < 2$$
 or $\frac{1}{2}x > 1$

$$x < \frac{-1}{0} \text{ OR } x > \frac{2}{1}$$

$$x < \frac{-1}{2}$$
 OR $x > \frac{2}{2}$

$$x \ge -3$$
 AND $x \le 0$

2. $-6x \le 18$ and $x + 6 \le 6$

3.
$$x-4 < -7$$
 or $-4x \le 4$

$$\underline{x < -3}$$
 OR $\underline{x \ge -1}$

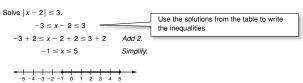
4.
$$-3x \le 6$$
 and $x + 2 < 5$
 $x \ge -2$ AND $x < 3$

$$x < 4$$
 and $x > -4$

Copyright © by Holt, Rinehart and Winston. All rights reserved.

Holt Algebra 2

Copyright © by Holt, Rinehart and Winston. All rights reserved.


Holt Algebra 2

LESSON Reteach

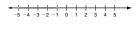
2-8 Solving Absolute-Value Equations and Inequalities (continued)

Solving absolute-value inequalities is like solving compound inequalities.

$$-5 - 4 - 3 - 2 - 1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$
Solve $|2x - 1| > 5$.

$$2x-1>5$$
 OR $2x-1<-5$ $2x>6$ OR $2x<-4$ Add 1. $x>3$ OR $x<-2$ Divide by 2.

Solve and graph.


5.
$$|x+3| < 2$$

$$\frac{-2}{-5} < x + 3 < 2$$

6.
$$|2x + 1| \ge 3$$

$$2x + 1 \ge 3$$
 OR $2x + 1 \le -3$
 $2x \ge 2$ OR $2x \le -4$

$$x \ge 1$$
 OR $x \le -2$

Copyright © by Holt, Rinehart and Winston. All rights reserved.

North American Wildlife

Animal

Grizzly bear

Polar bear

Black bear Mule deer

Arctic wolf

River otter

Opossum

Nutria

Rabbit

Weight

Groups (kg)

135-450

10-90

3-8

LESSON Challenge

2-8 Relating the Length of a Solution Interval to a Coefficient

Changing the value of a coefficient in an absolute-value linear inequality results in a change in the solution interval.

1.
$$|ax + b| \le c$$
, where $a > 0$ and $c > 0$.

$$\frac{-c-b}{a} \le x \le \frac{c-b}{a}$$

a. Solve the inequality for x in terms of a, b, and c.

b. Verify that your solution is equivalent to $\frac{-(b+c)}{a} \le x \le \frac{c-b}{a}$. Possible answer: The solution of the absolute-value inequality gives

 $x \le \frac{c-b}{a}$ and $x \ge \frac{-c-b}{a}$. Read the second inequality from right to left and combine the two inequalities into a single inequality.

Apply the general solution to solve each inequality.

2.
$$|2x+3| \le 5$$
 $-4 \le x \le 1$

$$-2 \le x \le \frac{1}{2}$$

Refer to the inequalities in Exercises 2 and 3.

4. a. Compare the values of a, b, and c in the two inequalities.

The values of b and c are the same in both inequalities. The value of a has increased from the first inequality to the second.

b. How does the value of a affect the length of the solution interval?

As a increases, the length of the solution interval decreases.

c. Predict the solution interval for the inequality $|8x + 3| \le 5$.

d. Use the general solution to determine if your prediction was correct.

$$\frac{-5-3}{8} \le \chi \le \frac{5-3}{8} = \frac{-8}{8} \le \chi \le \frac{2}{8} = -1 \le \chi \le \frac{1}{4}$$

e. What is the relationship between the solution interval and the coefficient of x in this absolute-value inequality?

Possible answer: When the coefficient of x is doubled, the solution interval is reduced by $\frac{1}{2}$ of the units.

Solve.

$$\frac{-21+6}{2} = -5 \le x \le \frac{21+6}{2} = 9$$

5. a. Use the general solution to solve $|3x - 6| \le 21$.

b. Predict the solution interval of $|6x - 6| \le 21$. **c.** Predict the solution interval of $|12x - 6| \le 21$.

 $-1.25 \le x \le 2.25$

Holt Algebra 2

Daily Food Requirement

(kg)

9.9 3.9

2.8

0.8

0.38

0.19

0.18

Copyright © by Holt, Rinehart and Winston. All rights reserved

64

Holt Algebra 2

Problem Solving 2-8 Solving Absolute-Value Equations and Inequalities

Gita's science class is making a set of posters about North American

1. What is the center of each weight group?

	the content of each weight group.
W,	292.5
W ₂	50
_	5.5
	W ₁

2. Express each weight group as an absolute-

value expression.			
a. W₁	$ W_1 - 292.5 \leq 157.5$		
b. W ₂	$ W_2 - 50 \le 40$		
c. W ₂	$ W_3 - 5.5 \le 2.5$		

- 3. Write inequalities to show the amount of food required each day for animals in each weight group.
 - a. $W_1 \underline{\hspace{1cm} f \geq 3.9}$ and $f \leq 10.5$ **b.** $W_2 _{\underline{}} f \ge 0.8 \text{ and } f \le 2.8$ c. $W_3 _ f \ge 0.18 \text{ and } f \le 0.38$
- 4. Gita wants to use the term disjunction or conjunction on her poster showing the inequalities. Which term should she use? Why?

Conjunction; Possible answer: the compound statement uses the term and.

5. Les includes the following on his poster:

Solve this equation to find the number of kilograms of food consumed each day by an animal in one of the weight groups:

$$|f - 7.2| \le 3.3.$$

Find the solution.

c. W₃_

$$3.9 \le f \le 10.5$$

6. Write an absolute-value inequality to represent the maximum weight difference between a grizzly bear, g, and a black bear, b.

$$|g-b|\leq 315$$

Copyright © by Holt, Rinehart and Winston All rights reserved. Holt Algebra 2

Reading Strategies 2-8 Understand Vocabulary

Equations and inequalities can be combined to make compound statements. Disjunctions and conjunctions are two types of compound

Compound Statement	Definition and Symbol	Example
Disjunction	Two statements joined by the word or	$x > 1 \text{ or } x \le -2$
	Symbol: ∪	
Conjunction	Two statements joined by the word and	$x > 0$ and $x \le 6$
	Symbol: ∩	

Answer each question.

- 1. x > 1 or $x \le 2$
- **a.** Is the compound statement true for x = 6? Explain.

Yes; since x = 6 makes the first inequality in the disjunction true, the compound statement is also true.

b. Is the compound statement true for x = 0? Explain.

No; x = 0 makes both inequalities false, so the compound statement is also false.

c. For which values of x is the disjunction false?

 $-2 < x \le 1$; all x-values within this range make both inequalities false.

2. x > 0 and $x \le 6$

a. Describe the values of x for which the conjunction is true.

The conjunction is true for all numbers greater than 0 and less than or equal to 6.

b. Describe the values of *x* for which the conjunction is false?

The conjunction is false for all numbers less than or equal to 0 and all numbers greater than 6.

a. Describe in words the values of x for which the inequality is true. Then write a compound statement for those values of x.

All number greater than 5 or all numbers less than -5; x > 5 or x < -5**b.** Write a compound statement to show all the values of x for which the inequality is false.

 $x \ge -5$ and $x \le 5$

Copyright © by Holt, Rinehart and Winston. All rights reserved. Holt Algebra 2