Name Date Class	lame	Date	Class
-----------------	------	------	-------

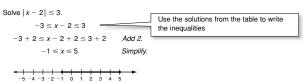
Reading Strategies

2-8 Understand Vocabulary

Equations and inequalities can be combined to make compound statements. **Disjunctions** and **conjunctions** are two types of compound statements.

Compound Statement	Definition and Symbol	Example
Disjunction	Two statements joined by the word or	$x > 1 \text{ or } x \le -2$
	Symbol: ∪	
Conjunction	Two statements joined by the word and	$x > 0$ and $x \le 6$
	Symbol: ∩	

Answer each question.


- **1.** x > 1 or $x \le 2$
 - **a.** Is the compound statement true for x = 6? Explain.
 - **b.** Is the compound statement true for x = 0? Explain.
 - **c.** For which values of *x* is the disjunction false?
- **2.** x > 0 and $x \le 6$
 - **a.** Describe the values of *x* for which the conjunction is true.
 - **b.** Describe the values of *x* for which the conjunction is false?
- 3. |x| > 5
 - **a.** Describe in words the values of *x* for which the inequality is true. Then write a compound statement for those values of *x*.
 - **b.** Write a compound statement to show all the values of x for which the inequality is false.

LESSON Reteach

2-8 Solving Absolute-Value Equations and Inequalities (continued)

Solving absolute-value inequalities is like solving compound inequalities.

$$-5 - 4 - 3 - 2 - 1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$
Solve $|2x - 1| > 5$.

$$2x-1>5$$
 OR $2x-1<-5$ $2x>6$ OR $2x<-4$ Add 1. $x>3$ OR $x<-2$ Divide by 2.

Solve and graph.

5.
$$|x+3| < 2$$

$$\frac{-2}{-5} < x + 3 < 2$$

6.
$$|2x + 1| \ge 3$$

$$2x + 1 \ge 3$$
 OR $2x + 1 \le -3$
 $2x \ge 2$ OR $2x \le -4$

$$x \ge 1$$
 OR $x \le -2$

Copyright © by Holt, Rinehart and Winston. All rights reserved.

North American Wildlife

Animal

Grizzly bear

Polar bear

Black bear Mule deer

Arctic wolf

River otter

Opossum

Nutria

Rabbit

Weight

Groups (kg)

135-450

10-90

3-8

LESSON Challenge

2-8 Relating the Length of a Solution Interval to a Coefficient

Changing the value of a coefficient in an absolute-value linear inequality results in a change in the solution interval.

1.
$$|ax + b| \le c$$
, where $a > 0$ and $c > 0$.

$$\frac{-c-b}{a} \le x \le \frac{c-b}{a}$$

a. Solve the inequality for x in terms of a, b, and c.

b. Verify that your solution is equivalent to $\frac{-(b+c)}{a} \le x \le \frac{c-b}{a}$. Possible answer: The solution of the absolute-value inequality gives

 $x \le \frac{c-b}{a}$ and $x \ge \frac{-c-b}{a}$. Read the second inequality from right to left and combine the two inequalities into a single inequality.

Apply the general solution to solve each inequality.

2.
$$|2x+3| \le 5$$
 $-4 \le x \le 1$

$$-2 \le x \le \frac{1}{2}$$

Refer to the inequalities in Exercises 2 and 3.

4. a. Compare the values of a, b, and c in the two inequalities.

The values of b and c are the same in both inequalities. The value of a has increased from the first inequality to the second.

b. How does the value of a affect the length of the solution interval?

As a increases, the length of the solution interval decreases.

c. Predict the solution interval for the inequality $|8x + 3| \le 5$.

d. Use the general solution to determine if your prediction was correct.

$$\frac{-5-3}{8} \le \chi \le \frac{5-3}{8} = \frac{-8}{8} \le \chi \le \frac{2}{8} = -1 \le \chi \le \frac{1}{4}$$

e. What is the relationship between the solution interval and the coefficient of x in this absolute-value inequality?

Possible answer: When the coefficient of x is doubled, the solution interval is reduced by $\frac{1}{2}$ of the units.

Solve.

$$\frac{-21+6}{2} = -5 \le x \le \frac{21+6}{2} = 9$$

5. a. Use the general solution to solve $|3x - 6| \le 21$.

b. Predict the solution interval of $|6x - 6| \le 21$. **c.** Predict the solution interval of $|12x - 6| \le 21$.

 $-1.25 \le x \le 2.25$

Holt Algebra 2

Daily Food Requirement

(kg)

9.9 3.9

2.8

0.8

0.38

0.19

0.18

Copyright © by Holt, Rinehart and Winston. All rights reserved

64

Holt Algebra 2

Problem Solving 2-8 Solving Absolute-Value Equations and Inequalities

Gita's science class is making a set of posters about North American

1. What is the center of each weight group?

	the content of each weight group.
W,	292.5
W ₂	50
_	5.5
	W ₁

2. Express each weight group as an absolute-

value e	pression.
a. W₁	$ W_1 - 292.5 \leq 157.5$
b. W ₂	$ W_2 - 50 \le 40$
c. W ₂	$ W_3 - 5.5 \le 2.5$

- 3. Write inequalities to show the amount of food required each day for animals in each weight group.
 - a. $W_1 \underline{\hspace{1cm} f \geq 3.9}$ and $f \leq 10.5$ **b.** $W_2 _{\underline{}} f \ge 0.8 \text{ and } f \le 2.8$ c. $W_3 _ f \ge 0.18 \text{ and } f \le 0.38$
- 4. Gita wants to use the term disjunction or conjunction on her poster showing the inequalities. Which term should she use? Why?

Conjunction; Possible answer: the compound statement uses the term and.

5. Les includes the following on his poster:

Solve this equation to find the number of kilograms of food consumed each day by an animal in one of the weight groups:

$$|f - 7.2| \le 3.3.$$

Find the solution.

c. W₃

$$3.9 \le f \le 10.5$$

6. Write an absolute-value inequality to represent the maximum weight difference between a grizzly bear, g, and a black bear, b.

$$|g-b|\leq 315$$

Copyright © by Holt, Rinehart and Winston All rights reserved. Holt Algebra 2

Reading Strategies 2-8 Understand Vocabulary

Equations and inequalities can be combined to make compound statements. Disjunctions and conjunctions are two types of compound

Compound Statement	Definition and Symbol	Example
Disjunction	Two statements joined by the word or	$x > 1 \text{ or } x \le -2$
	Symbol: ∪	
Conjunction	Two statements joined by the word and	$x > 0$ and $x \le 6$
	Symbol: ∩	

Answer each question.

- 1. x > 1 or $x \le 2$
- **a.** Is the compound statement true for x = 6? Explain.

Yes; since x = 6 makes the first inequality in the disjunction true, the compound statement is also true.

b. Is the compound statement true for x = 0? Explain.

No; x = 0 makes both inequalities false, so the compound statement is also false.

c. For which values of x is the disjunction false?

 $-2 < x \le 1$; all x-values within this range make both inequalities false.

2. x > 0 and $x \le 6$

a. Describe the values of x for which the conjunction is true.

The conjunction is true for all numbers greater than 0 and less than or equal to 6.

b. Describe the values of *x* for which the conjunction is false?

The conjunction is false for all numbers less than or equal to 0 and all numbers greater than 6.

a. Describe in words the values of x for which the inequality is true. Then write a compound statement for those values of x.

All number greater than 5 or all numbers less than -5; x > 5 or x < -5**b.** Write a compound statement to show all the values of x for which the inequality is false.

 $x \ge -5$ and $x \le 5$

Copyright © by Holt, Rinehart and Winston. All rights reserved. Holt Algebra 2