TEKS 2A.2.A

Practice B

Solving Absolute-Value Equations and Inequalities

Solve each equation.

1.
$$|2x + 1| = 7$$

2.
$$|-7x| = 28$$

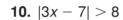
3.
$$3|3x|-7=2$$

4.
$$|2x-5|=5$$

5.
$$2|x+1|=14$$

6.
$$|4-x|+2=9$$

Solve each inequality or compound inequality. Then graph the solution.


7.
$$-4x + 2 > -10$$
 and $5x - 12 < 8$ 8. $3x - 4 \ge 8$ or $-x + 12 > 16$


8.
$$3x - 4 \ge 8$$
 or $-x + 12 > 16$

9.
$$|9x| \ge 18$$

11.
$$|0.3x| > 1$$

Solve.

13. Any measurement is accurate within ± 0.5 of the measurement unit. For example, if you measure your pencil to the nearest inch, your measurement could be 0.5 inch too long or 0.5 inch too short. Write an absolute-value inequality that shows the maximum and minimum actual measure of a nail measured to be 4.4 centimeters to the nearest 0.1 centimeter.

TEKS 2A.2.A

Practice B

2-8 Solving Absolute-Value Equations and Inequalities

Solve each equation.

1.
$$|2x + 1| = 7$$

2.
$$|-7x| = 28$$

3.
$$3|3x|-7=2$$

$$x = 3 \text{ or } x = -4$$
 $x = \pm 4$ $x = \pm 1$ $|2x - 5| = 5$ 5. $2|x + 1| = 14$ 6. $|4 - x| + 2 = 9$

$$x = \pm 4$$

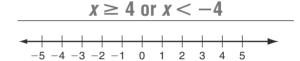
$$x = \pm 1$$

4.
$$|2x-5|=5$$

5.
$$2|x + 1| = 14$$

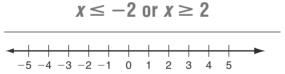
6.
$$|4-x|+2=9$$

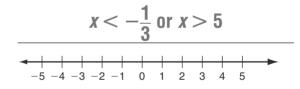
$$x = 6 \text{ or } x = -8$$


$$x = 6 \text{ or } x = -8$$
 $x = -3 \text{ or } x = 11$

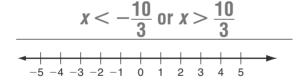
Solve each inequality or compound inequality. Then graph the solution.

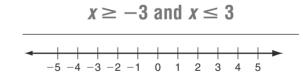
7.
$$-4x + 2 > -10$$
 and $5x - 12 < 8$


8.
$$3x - 4 \ge 8$$
 or $-x + 12 > 16$



9.
$$|9x| \ge 18$$


10.
$$|3x - 7| > 8$$



11.
$$|0.3x| > 1$$

12.
$$|7x| - 12 \le 9$$

Solve.

13. Any measurement is accurate within ± 0.5 of the measurement unit. For example, if you measure your pencil to the nearest inch, your measurement could be 0.5 inch too long or 0.5 inch too short. Write an absolute-value inequality that shows the maximum and minimum actual measure of a nail measured to be 4.4 centimeters to the nearest 0.1 centimeter.

$$|m-4.4|\leq 0.05$$