## **2-8** Solving Absolute-Value Equations and Inequalities

### **Example 1 Solving Compound Inequalities**

Solve each compound inequality. Then graph the solution set.

A. 
$$6y < -24$$
 OR  $y + 5 \ge 3$   
Solve both inequalities for y.  
 $6y < -24$  or  $y + 5 \ge 3$   
 $v < -4$   $v \ge -2$ 

The solution set is all points that satisfy  $\{y | y < -4 \text{ or } y \ge -2\}$ .

$$(-\infty, -4) \cup [-2, \infty)$$
  
B.  $\frac{1}{2}c \ge -2$  AND  $2c + 1 < 1$   
Solve both inequalities for  $c$ .  
 $\frac{1}{2}c \ge -2$  and  $2c + 1 < 1$   
 $c \ge -4$   $c < 0$ 

The solution set is the set of points that satisfy both  $c \ge -4$  and c < 0.

**C.** 
$$x - 5 < -2 \text{ OR } -2x \le -10$$

Solve both inequalities for *x*.

$$x - 5 < -2$$
 or  $-2x \le -10$   
 $x < 3$   $x \ge 5$ 

The solution set is all points that satisfy  $\{x | x < 3 \text{ or } x \ge 5\}$ .

# **2-8** Solving Absolute-Value Equations and Inequalities

#### Example 2 Solving Absolute-Value Equations

#### Solve each equation.

| Α. | -3 + k  = 10                                                                                 | This can be read as "the distance from k to $-3$ is 10." |  |
|----|----------------------------------------------------------------------------------------------|----------------------------------------------------------|--|
|    | -3 + k = 10  or  -3 +                                                                        | -k = -10 Rewrite the absolute value as a disjunction.    |  |
|    | <i>k</i> = 13 or <i>k</i> = −7                                                               | Add 3 to both sides of each equation.                    |  |
| В. | $\begin{vmatrix} \frac{x}{4} \\ -6 = -2 \\ \begin{vmatrix} \frac{x}{4} \\ \end{vmatrix} = 4$ | Isolate the absolute-value expression.                   |  |
|    | $\frac{x}{4} = 4 \text{ or } \frac{x}{4} = -4$                                               | Rewrite the absolute value as a disjunction.             |  |
|    | <i>x</i> = 16 or <i>x</i> = −16                                                              | Multiply both sides of each equation by 4.               |  |



#### **Example 3 Solving Absolute-Value** Inequalities with Disjunctions

Solve each inequality. Then graph the solutions set.

A. 
$$|-4q+2| \ge 10$$
  
 $-4q+2 \ge 10 \text{ or } -4q+2 \le -10$   
 $-4q \ge 8 \text{ or } -4q \le -12$   
 $q \ge -2 \text{ or } q \ge 3$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $\{q|q \le -2 \text{ or } q \ge 3\}$   
 $(-\infty, -2) \cup (-3, \infty)$   
To check, you can test a point in each of the three regions.  
 $|-4(-3) + 2| \ge 10$   $|-4(0) + 2| \ge 10$   $|-4(4) + 2| \ge 10$   
 $|14| \ge 10 \checkmark$   $|-14| \ge 10 \checkmark$   
B.  $|0.5r| - 3 \ge -3$   
 $|0.5r| \ge 0$  Isolate the absolute-value expression.  
 $0.5r \ge 0 \text{ or } 0.5r \le 0$  Rewrite the absolute value as a disjunction.  
 $r \ge 0 \text{ or } r \le 0$  Divide both sides of each inequality by 0.5.  
 $(-\infty, \infty)$ 

The solution set is *all real numbers*,  $\mathbb{R}$ .



#### **Example 4 Solving Absolute-Value** Inequalities with Conjunctions

Solve each inequality. Then graph the solution set.

| Α. | $\frac{ 2x+7 }{3} \le 1$           |              |                                                          |  |  |
|----|------------------------------------|--------------|----------------------------------------------------------|--|--|
|    | $ 2x+7  \leq 3$                    |              | Multiply both sides by 3.                                |  |  |
|    | $2x + 7 \le 3$ and $2x + 7 \ge -3$ |              | Rewrite the absolute value as a conjunction.             |  |  |
|    | $2x \leq -4$ and                   | $2x \ge -10$ | Subtract 7 from both sides of each inequality.           |  |  |
|    | $x \le -2$ and                     | $x \ge -5$   | Divide both sides of each inequality by 2.               |  |  |
|    | The solution set is {              | -2}.         |                                                          |  |  |
|    | -6 -5 -4 -3 -2 -1 0 1 2            |              |                                                          |  |  |
| В. | $-\frac{1}{2} p-2  \ge 3$          |              |                                                          |  |  |
|    | $ p-2  \leq -6$                    |              | ltiply both sides by –2, and erse the inequality symbol. |  |  |
|    | $p - 2 \le -6$ and $p - 2 \le -6$  | $2 \ge 6$    | write the absolute value as a njunction.                 |  |  |
|    | $p \leq -4$ and $p \geq 8$         |              | ld 2 to both sides of each<br>equality.                  |  |  |

Because no real number satisfies both  $p \le -4$  and  $p \ge 8$ , there is *no solution*. The solution set is  $\emptyset$ .