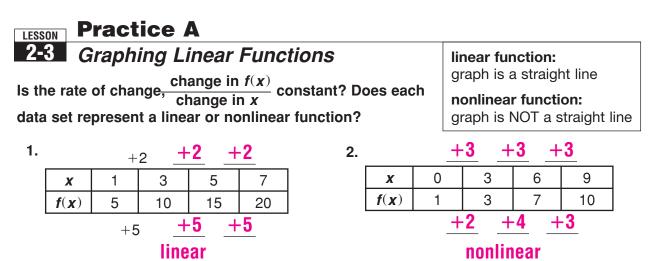


Plot the given point. Use the slope to find a second point. Then graph the line.

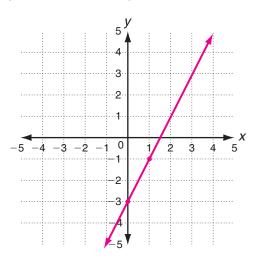
3. point: (0, −3); slope: 2

slope:
steepness of line
x-intercept :
x value where line crosses
x-axis


y-intercept :

y value where line crosses *y*-axis

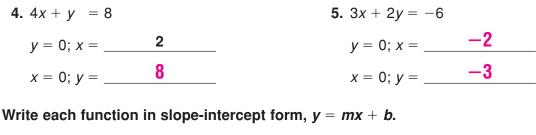
What is the *x*-intercept and the *y*-intercept for each line? The first one is started for you.


4. $4x + y = 8$	5. $3x + 2y = -6$
<i>y</i> = 0; <i>x</i> =	<i>y</i> = 0; <i>x</i> =
<i>x</i> = 0; <i>y</i> =	<i>x</i> = 0; <i>y</i> =
Write each function in slope-intercept form, $y = mx + b$.	

6. -5x + y = 7 -5x + y + 5x = 7 + 5xy =_____

Plot the given point. Use the slope to find a second point. Then graph the line.

3. point: (0, −3); slope: 2



slope: steepness of line x-intercept : x value where line crosses x-axis

y-intercept :

y value where line crosses *y*-axis

What is the *x*-intercept and the *y*-intercept for each line? The first one is started for you.

6. -5x + y = 7 -5x + y + 5x = 7 + 5x y = 5x + 77. 2y = 4x - 12y = 2x - 6