

Example 1 Recognizing Linear Functions

Determine whether each data set could represent a linear function.

Example 2 Graphing Lines Using Slope and a Point

Graph each line.

A. the line with slope $\frac{5}{2}$ that passes through (-1, -3)

Plot the point (-1, -3). The slope indicates a rise of 5 and a run of 2. Move up 5 and right 2 to find another point. Repeat. Then draw a line through the points.

B. the line with slope $-\frac{3}{4}$ that passes through (0, 2)

Plot the point (0, 2). The negative slope can be viewed as $\frac{-3}{4}$ or $\frac{3}{-4}$.

You can move down 3 units and right 4 units, or move up 3 units and left 4 units. Notice that all three points are on the same line.

Example 3 Graphing Lines Using the Intercepts

Find the intercepts of 4x - 2y = 16 and graph the line.

Find the *x*-intercept: 4x - 2y = 16

4x - 2(0) = 16	Substitute 0 for y.
4 <i>x</i> = 16	
<i>x</i> = 4	The x-intercept is 4.
Find the y-intercept: 4x -	- 2 <i>y</i> = 16
4(0) - 2y = 16	Substitute 0 for x.
-2y = 16	
<i>y</i> = -8	The y-intercept is -8 .

Draw the line through (4, 0) and (0, -8).

Example 4 Graphing Functions in Slope-Intercept Form

Write each function in slope-intercept form. Then graph the function.

A. -4x + y = -1Solve for y first. -4x + y = -1+4x + 4x Add 4x to both sides. y = 4x - 1The line has y-intercept -1 and slope 4, which is $\frac{4}{1}$. Plot the point (0, -1). Then

You can also use a graphing calculator to graph. Choose the **STANDARD SQUARE** window to make your graph look like it would on a regular grid. Press 2000, choose **6:ZStandard**, press 2000 again, and then choose **5:ZSquare**.

move up 4 and right 1 to find other points.

Example 4 Graphing Functions in Slope-Intercept Form (continued)

)

B.
$$x + \frac{3}{4}y = 6$$

Solve for y first.
 $x + \frac{3}{4}y = 6$
 $\frac{-x}{\frac{3}{4}y} = \frac{-x}{-x+6}$
 $\frac{4}{3}(\frac{3}{4}y) = \frac{4}{3}(-x+6)$
 $y = \frac{4}{3}(-x) + \frac{4}{3}(6)$
 $y = -\frac{4}{3}x + 8$

Subtract x from both sides.

Multiply both sides by $\frac{4}{3}$. Distribute.

The graph of the line has *y*-intercept 8 and slope $-\frac{4}{3}$. Plot the point (0, 8). Then move down 4 and right 3 to find other points.

Example 5 Graphing Vertical and Horizontal Lines

Determine if each line is vertical or horizontal. Then graph.

A. *x* = 2

This is a vertical line located at the *x*-value 2. It is not a function.

B. y = -4

This is a horizontal line located at the *y*-value -4.

Example 6 Sports Application

A ski lift carries skiers from an altitude of point 1800 feet up to an altitude of 3000 feet over a horizontal distance of 2000 feet. Find the average slope of this part of the mountain. Graph the elevation against the distance.

Step 1 Find the slope. The rise is 3000 - 1800, or 1200 ft. The run is 2000 feet. The slope is $\frac{1200}{2000} = \frac{3}{5} = 0.6$.

Step 2 Graph the line.

The *y*-intercept is the original altitude, 1800 ft. Use (0, 1800) and (2000, 3000) as two points on the line. Select a scale for each axis that will fit the data, and graph the function.

