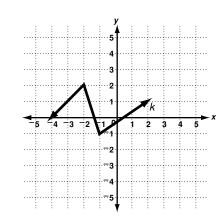

Practice A

1-8 Exploring Transformations

Use the graph to perform each transformation described.


1. Plot point *A* at (4, 3). Translate point *A* left 5 units. Label this point *B*. Give the coordinates of point *B*.

- **2.** Plot point *C* at (1, 1). Translate point *C* right 2 units and down 3 units. Label this point *D*. Give the coordinates of point *D*.
- **3.** Transform y = f(x) by translating it right 2 units. Label the new function g. Compare the points that make up the 2 functions. Which coordinate changes, x or y?
- **4.** Transform y = f(x) by reflecting it across the *x*-axis. Label the new function *h*. Which coordinate changes, *x* or *y*?

Use the graph to perform each transformation described.

5. Transform y = k(x) by compressing it horizontally by a factor of $\frac{1}{2}$. Label the new function m. Which coordinate is multiplied by $\frac{1}{2}$, x or y?

- **6.** Transform y = k(x) by translating it down 3 units. Label the new function p. What happens to the y-coordinate in each new ordered pair?
- 7. Transform y = k(x) by stretching it vertically by a factor of 2. Label the new function q. Which coordinate is multiplied by 2, x or y?
- **8.** Describe how the coordinates of a function change when it is translated 2 units to the left and 4 units up.
- **9.** Describe how the coordinates of a function change when you vertically compress a function by a factor of $\frac{2}{3}$.

Practice A

1-8 Exploring Transformations

Use the graph to perform each transformation described.

Plot point A at (4, 3). Translate point A left 5 units. Label this point B. Give the coordinates of point B.

2. Plot point C at (1, 1). Translate point C right 2 units and Point O at (1, 1). Translate point ${\cal C}$ right 2 units and down 3 units. Label this point ${\cal D}$. Give the coordinates of point ${\cal D}$.

3. Transform y = f(x) by translating it right 2 units. Label the new function g. Compare the points that make up the 2 functions. Which coordinate changes, x or y?

4. Transform y = f(x) by reflecting it across the x-axis. Label the new function h. Which coordinate changes, x or y?

Use the graph to perform each transformation described.

5. Transform y = k(x) by compressing it horizontally by a factor of $\frac{1}{2}$. Label the new function m. Which coordinate is multiplied by $\frac{1}{2}$, x or y?

x-coordinate

6. Transform y = k(x) by translating it down 3 units. Label the new function p. What happens to the y-coordinate in each new ordered pair?

It is 3 less than the original y-coordinate.

7. Transform y = k(x) by stretching it vertically by a factor of 2. Label the new function a. Which coordinate is multiplied by 2, x or v?

y-coordinate

8. Describe how the coordinates of a function change when it is translated 2 units to the left and 4 units up.

$$(x, y)$$
 becomes $(x-2, y+4)$

9. Describe how the coordinates of a function change when you vertically compress a function by a factor of $\frac{2}{3}$.

Copyright © by Holt, Rinehart and Winston. All rights reserved.

59

Holt Algebra 2

Practice B

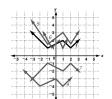
1-8 Exploring Transformations

Perform the given translation on the point (2, 5) and give the coordinates of the translated point.

1. left 3 units 2. down 6 units

(-1, 5)

(2, -1)


3. right 4 units, up 2 units

(6, 7)

Use the table to perform each transformation of y = f(x). Use the same coordinate plane as the original function.

4. translation left 1 unit, down 5 units

<i>x</i> – 1	х	у	<i>y</i> – 5
-4	-3	3	-2
-2	-1	1	-4
0	1	2	-3
1	2	1	-4
2	3	2	-3

5. vertical stretch

Tactor of $\frac{1}{2}$		
x	у	$\frac{3}{2}y$
-3	3	9 2 3 2
-1	1	3 2
1	2	3
2	1	32
2	0	2

6. horizontal compression factor of $\frac{1}{2}$

$\frac{1}{2}x$	x	у	
$-\frac{1}{2}x$	-3	3	
$-\frac{1}{2}$	-1	1	
1/2	1	2	
1	2	1	
3	3	2	

7. reflection across x-axis

x	y	-y
-3	3	-3
-1	1	-1
1	2	-2
2	1	-1
3	2	-2

8. George has a goal for the number of computers he wants to sell each month for the next 6 months at his computer store. He draws a graph to show his projected profits for that period. Then he decides to discount the prices by 10%. How will this affect his profits? Identify the transformation to his graph and describe how to find the ordered pairs for the transformation.

Profits are reduced by 10%; vertical compression; (x, 0.9y)

Copyright © by Holt, Rinehart and Winston All rights reserved.

60

Holt Algebra 2

Practice C Exploring Transformations

Transform trapezoid ABCD as indicated. Estimate the area of each transformed trapezoid as compared to the area of trapezoid ABCD.

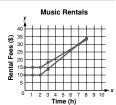


1. reflection across the x-axis

Areas are equal. 2. horizontal compression by a factor of $\frac{1}{2}$

Area is $\frac{1}{2}$ of original trapezoid.

4. vertical compression by a factor of $\frac{1}{2}$ Area is $\frac{1}{2}$ of original trapezoid.


3. horizontal stretch by a factor of 2

Area is doubled.

5. vertical stretch by a factor of $\frac{3}{2}$ Area is $\frac{3}{2}$ of original trapezoid.

Tucci's House of Music rents practice space and musical instruments. Use of a practice room costs \$10 for the first 2 hours and \$4 for each additional hour. An electric guitar rents for \$15 for the first 2 hours and \$3 for each additional hour.

6. Sketch a graph of two functions, one for the cost of renting a practice room and another for the cost of renting an electric guitar.

Identify the transformation of the original graphs represented by the following changes.

7. The charge for the first 2 hours' rental of a practice room increases to \$12.

Translation

8. As a special promotion, Tucci's House of Music cuts the practice room charges by 50% for first-time users.

Vertical compression

9. The cost of renting a guitar increases to \$30 for the first 4 hours and \$6 for each additional hour.

Horizontal stretch and translation

Copyright © by Holt, Rinehart and Winston. All rights reserved.

61

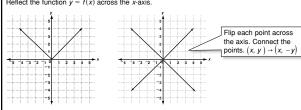
Holt Algebra 2

Reteach 1-8 Exploring Transformations

A translation moves a point, figure, or function right, left, up, or down.

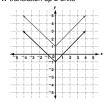
Horizontal Translation (right or left)	Vertical Translation (up or down)	
	The y-coordinate changes.	
$(x, y) \rightarrow (x + h, y)$	$(x, y) \rightarrow (x, y + k)$	

Translate the function y = f(x) left 2 units.



Move each point 2 units left. Connect the points. $(x, y) \rightarrow (x-2, y)$

A reflection flips a point, figure, or function across a line


Reflection Across y-axis	Reflection Across x-axis
The <i>x</i> -coordinate changes. $(x, y) \rightarrow (-x, y)$	The <i>y</i> -coordinate changes. $(x, y) \rightarrow (x, -y)$

Reflect the function y = f(x) across the x-axis.

Perform each transformation of y = f(x).

1. translation up 2 units

2. reflection across x-axis

Copyright © by Holt, Rin All rights reserved. 62 Holt Algebra 2