Additional Examples

Example 1

Describe the solutions of $x-6 \geq 4$ in words.

\boldsymbol{x}	-4	0	9.99	10	10.01	10.1
$\boldsymbol{x}-\mathbf{6}$	-10	-6	3.99	4	4.01	4.1
$\boldsymbol{x}-\mathbf{6} ? \geq \mathbf{4}$	$-10 ? \geq 4$	$-6 ? \geq 4$	$3.99 ? \geq 4$	$4 ? \geq 4$	$4.01 ? \geq 4$	$4.1 ? \geq 4$
Solution ?	No	No	No	Yes	Yes	Yes

When the value of x is a number less than 10 , the value of $x-6$ is
\square

When the value of x is 10 , the value of $x-6$ is \qquad

When the value of x is a number greater than 10 , the value of $x-6$ is
\qquad

It appears that the solutions of $x-6 \geq 4$ are

Additional Examples

Example 1

Describe the solutions of $x-6 \geq 4$ in words.

\boldsymbol{x}	-4	0	9.99	10	10.01	10.1
$\boldsymbol{x - 6}$	-10	-6	3.99	4	4.01	4.1
$\boldsymbol{x - 6} \mathbf{6}^{?} \geq \mathbf{4}$	$-10 ? \geq 4$	$-6 ? \geq 4$	$3.99 ? \geq 4$	$4 ? \geq 4$	$4.01 ? \geq 4$	$4.1^{?} \geq 4$
Solution ?	No	No	No	Yes	Yes	Yes

When the value of x is a number less than 10 , the value of $x-6$ is less than 4

When the value of x is 10 , the value of $x-6$ is 4

When the value of x is a number greater than 10 , the value of $x-6$ is greater than 4

It appears that the solutions of $x-6 \geq 4$ are all real numbers greater than or equal to 10

Example 2

Graph each inequality.

A. $m \geq \frac{3}{4}$

Draw a
 circle at \qquad

Shade all numbers
\square and draw an arrow pointing to the
\square

Simplify.

Draw an \square circle at \qquad

Shade all numbers and draw an arrow pointing to the

Example 2

Graph each inequality.

A. $m \geq \frac{3}{4}$

Draw a solid circle at $\frac{3}{4}$.

Shade all numbers greater than $\frac{3}{4}$ and draw an arrow pointing to the right
B. $t<5(-1+3)$
$t<5(-1+3)$
$t<5(2)$
Simplify.
$t<10$

Draw an empty circle at 10 .
Shade all numbers less than 10 and draw an arrow pointing to the left

Example 3

Write the inequality shown by each graph.
A. $\underset{-3}{\underset{-2}{+2}} \begin{array}{lllllllll}1 & -1 & 0 & 1 & 2 & 3\end{array}$

Use the variable x. The arrow points to the \square
The empty circle at 2 means that 2 is , so use or
\square \square.
so use

B.

Use the variable x. The arrow points to the
 or
\square The solid circle at -0.5 means that -0.5 is a solution, so use

Example 3

Write the inequality shown by each graph.

Use the variable x. The arrow points to the left , so use $<$ or \leq. The empty circle at 2 means that 2 is not a solution
so use $<$.
$x<2$
B. $\underset{-1}{ } \underset{-0.5}{ } \quad \mathbf{0}$

Use the variable x. The arrow points to the right , so use $>$ or \geq. The solid circle at -0.5 means that -0.5 is a solution, so use \geq. $x \geq-0.5$

Example 4

Ray's dad told him not to turn on the air conditioner unless the temperature is at least 85° F. Define a variable and write an inequality for the temperatures at which Ray can turn on the air conditioner. Graph the solutions.

Example 4

Ray's dad told him not to turn on the air conditioner unless the temperature is at least 85° F. Define a variable and write an inequality for the temperatures at which Ray can turn on the air conditioner. Graph the solutions.

Check It Out!

1. Describe the solutions of $2 p>8$ in words.
2. Graph the inequality.
$2^{2}-4 \geq w$
3. Write the inequality shown by the graph.

4. A store's employees earn at least $\$ 8.25$ per hour. Define a variable and write an inequality for the amount the employees may earn per hour. Graph the solutions.

Check It Out!

1. Describe the solutions of $2 p>8$ in words.
all real numbers greater than 4
2. Graph the inequality.
$2^{2}-4 \geq w$

3. Write the inequality shown by the graph.

$x<2.5$
4. A store's employees earn at least $\$ 8.25$ per hour. Define a variable and write an inequality for the amount the employees may earn per hour. Graph the solutions.
$d=$ amount employee can earn per hour; $d \geq 8.25$;

