12-2 Study Guide and Intervention

Permutations and Combinations

Permutations When a group of objects or people are arranged in a certain order, the arrangement is called a **permutation**.

Permutations	The number of permutations of <i>n</i> distinct objects taken <i>r</i> at a time is given by $P(n, r) = \frac{n!}{(n-r)!}$.
Permutations with Repetitions	The number of permutations of <i>n</i> objects of which <i>p</i> are alike and <i>q</i> are alike is $\frac{n!}{p!q!}$.

The rule for permutations with repetitions can be extended to any number of objects that are repeated.

Example From a list of 20 books, each student must choose 4 books for book reports. The first report is a traditional book report, the second a poster, the third a newspaper interview with one of the characters, and the fourth a timeline of the plot. How many different orderings of books can be chosen?

Since each book report has a different format, order is important. You must find the number of permutations of 20 objects taken 4 at a time.

$P(n, r) = \frac{n!}{(n-r)!}$	Permutation formula
$P(20, 4) = \frac{20!}{(20 - 4)!}$	<i>n</i> = 20, <i>r</i> = 4
$=\frac{20!}{16!}$ 1 1 1	Simplify.
$=\frac{20\cdot 19\cdot 18\cdot 17\cdot 16\cdot 15\cdot \ldots \cdot \cancel{1}}{16\cdot 15\cdot \ldots \cdot \cancel{1}}$	Divide by common factors
$= 116,280^{-1}$	

Books for the book reports can be chosen 116,280 ways.

Exercises

Evaluate each expression.

1. *P*(6, 3) **2.** *P*(8, 5) **3.** *P*(9, 4) **4.** *P*(11, 6)

How many different ways can the letters of each word be arranged?

5. MOM **6.** MONDAY **7.** STEREO

8. SCHOOL The high school chorus has been practicing 12 songs, but there is time for only 5 of them at the spring concert. How may different orderings of 5 songs are possible?

Lesson 12-2

12-2 Study Guide and Intervention (continued)

Permutations and Combinations

Combinations An arrangement or selection of objects in which order is *not* important is called a combination.

Combinations

ations The number of combinations of *n* distinct objects taken *r* at a time is given by $C(n, r) = \frac{n!}{(n-r)!r!}$.

Example 1 SCHOOL How many groups of 4 students can be selected from a

class of 20?

Since the order of choosing the students is not important, you must find the number of combinations of 20 students taken 4 at a time.

$$C(n, r) = \frac{n!}{(n - r)!r!}$$
Combination formula

$$C(20, 4) = \frac{20!}{(20 - 4)!4!}$$
n = 20, r = 4

$$= \frac{20!}{16!4!}$$
 or 4845

There are 4845 possible ways to choose 4 students.

Example 2 In how many ways can you choose 1 vowel and 2 consonants from a set of 26 letter tiles? (Assume there are 5 vowels and 21 consonants.)

By the Fundamental Counting Principle, you can multiply the number of ways to select one vowel and the number of ways to select 2 consonants. Only the letters chosen matter, not the order in which they were chosen, so use combinations.

C(5, 1) One of 5 vowels are drawn.

C(21, 2) Two of 21 consonants are drawn.

$C(5, 1) \cdot C(21, 2)$	$=\frac{5!}{(5-1)!1!}\cdot\frac{21!}{(21-2)!2!}$	Combination formula
	$=rac{5!}{4!}\cdotrac{21!}{19!2!}$	Subtract.
	$= 5 \cdot 210 \text{ or } 1050$	Simplify.

There are 1050 combinations of 1 vowel and 2 consonants.

Exercises

Evaluate each expression.

	1. <i>C</i> (5, 3)	2. $C(7, 4)$	3. <i>C</i> (15, 7)	4. <i>C</i> (10, 5)
--	---------------------------	---------------------	----------------------------	----------------------------

- **5. PLAYING CARDS** From a standard deck of 52 cards, in how many ways can 5 cards be drawn?
- **6. HOCKEY** How many hockey teams of 6 players can be formed from 14 players without regard to position played?
- **7. COMMITTEES** From a group of 10 men and 12 women, how many committees of 5 men and 6 women can be formed?