North Park

Eastwich

Beach

### **Study Guide and Intervention** 7-7

## Scale Drawings and Models

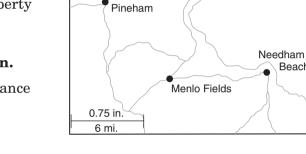
Scale Models A scale model or a scale drawing is an object or drawing with lengths proportional to the object it represents. The **scale** of a model or drawing is the ratio of the length of the model or drawing to the actual length of the object being modeled or drawn.

#### Example MAPS The scale on the map shown is 0.75 inches : 6 miles. Find the actual distance from Pineham to Menlo Fields.

Use a ruler. The distance between Pineham and Menlo Fields is about  $1\frac{1}{16}$  or 1.0625 inches.

### Method 1: Write and solve a proportion.

Let *x* represent the distance between cities.


<u>0.75 in.</u> <u>1.0625 in.</u> — map 6 mi x mi ← actual  $0.75 \cdot x = 6 \cdot 1.0625$  Cross Products Property x = 8.5Simplify.

### Method 2: Write and solve an equation.

Let a = actual distance and <math>m = map distancein inches. Write the scale as  $\frac{6 \text{ mi}}{0.75 \text{ in.}}$ , which is  $6 \div 0.75$  or 8 miles per inch.  $a = 8 \cdot m$ Write an equation.

| $= 8 \cdot 1.0625$ | m = 1.0625 in. |
|--------------------|----------------|
| = 8.5              | Solve.         |





Denville

The distance between Pineham and Menlo Fields is 8.5 miles.

### **Exercises**

Use the map above and a customary ruler to find the actual distance between each pair of cities. Measure to the nearest sixteenth of an inch.

- 1. Eastwich and Needham Beach 12 miles
- 2. North Park and Menlo Fields 16 miles
- 3. North Park and Eastwich 6.5 miles
- 4. Denville and Pineham 3.5 miles
- 5. Pineham and Eastwich 11 miles

## 7-7 Study Guide and Intervention (continued)

## Scale Drawings and Models

**Use Scale Factors** The **scale factor** of a drawing or scale model is the scale written as a unitless ratio in simplest form. Scale factors are always written so that the model length in the ratio comes first.

# **Example** SCALE MODEL A doll house that is 15 inches tall is a scale model of a real house with a height of 20 feet.

### a. What is the scale of the model?

To find the scale, write the ratio of a model length to an actual length.

 $\frac{\text{model length}}{\text{actual length}} = \frac{15 \text{ in.}}{20 \text{ ft}} \text{ or } \frac{3 \text{ in.}}{4 \text{ ft}}$ 

The scale of the model is 3 in.:4 ft

### b. How many times as tall as the actual house is the model?

Multiply the scale factor of the model by a conversion factor that relates inches to feet to obtain a unitless ratio.

 $\frac{3 \text{ in.}}{4 \text{ ft}} = \frac{3 \text{ in.}}{4 \text{ ft}} \cdot \frac{1 \text{ ft}}{12 \text{ in.}} = \frac{3}{48} \text{ or } \frac{1}{16}$ 

The scale factor is 1:16. That is, the model is  $\frac{1}{16}$  as tall as the actual house.

### Exercises

1. MODEL TRAIN The length of a model train is 18 inches. It is a scale model of a train

that is 48 feet long. Find the scale factor.  $\ensuremath{\textbf{1:32}}$ 

- **2. ART** An artist in Portland, Oregon, makes bronze sculptures of dogs. The ratio of the height of a sculpture to the actual height of the dog is 2:3. If the height of the sculpture is 14 inches, find the height of the dog. **21 in.**