Name an angle or angle pair that satisfies each condition.

14. a linear pair whose vertex is F

SOLUTION:

Sample answer: A linear pair is a pair of adjacent angles with noncommon sides that are opposite rays. $\angle BFC$ and $\angle BFD$ are linear pair with vertex *F*, $\angle GFD$ and $\angle GFC$ are linear pair with vertex *F*.

ANSWER:

Sample answer: $\angle BFC$, $\angle BFD$

16. an angle supplementary to $\angle CBF$

SOLUTION:

Sample answer: Supplementary angles are two angles with measures that have a sum of 180. Since $m\angle CBF + m\angle JBF = 180$, $\angle JBF$ is supplementary to $\angle CBF$.

ANSWER:

Sample answer: $\angle JBF$

Find the value of each variable.

$$(3x)^{(8y-102)^{*}}$$
22.

SOLUTION:

In the figure, $(8y-102)^\circ$ angle and $(2y+6)^\circ$ angle are vertical angles. Vertical angles are congruent. So, $(8y-102)^\circ = (2y+6)^\circ$.

8y - 102 = 2y + 6	Def. of Vertical Angles.
8y - 2y - 102 = 2y - 2y + 6	-2y from each side.
6y - 102 = 6	Simplify.
6y - 102 + 102 = 6 + 102	+102 to each side.
6 <i>y</i> = 108	Simplify.
$\frac{6y}{6} = \frac{108}{6}$	÷ each side by 6.
y = 18	Simplify.

The angles in a linear pair are supplementary. So, $(8y-102)^{\circ} + (3x)^{\circ} = 180^{\circ}$.

```
(8y - 102) + (3x) = 180
                                  Def.of Supplementary Angles.
8(18) - 102 + 3x = 180
                                 Replace y with 18.
  144 - 102 + 3x = 180
                                  Multiply.
          42 + 3x = 180
                                  Subtraction.
     42 - 42 + 3x = 180 - 42 Subtract 42 from each side
                3x = 138
                                  Simplify.
                \frac{3x}{2} = \frac{138}{2}
                                  Divide each side by 3.
                       3
                 x = 46
                                  Simplify.
```

So, the values of the variables are x = 46 and y = 18.

ANSWER:

x = 46; y = 18

$$(2y+50)^{\circ} (7x-248)^{\circ} (5y-17)^{\circ} (x+44)^{\circ}$$
23.

SOLUTION:

Supplementary angles have measures that sum to 180. So, $(2y + 50)^\circ + (5y - 17)^\circ = 180^\circ$ and $(x + 44)^\circ + (7x - 248)^\circ = 180^\circ$.

Consider $(2y + 50)^\circ + (5y - 17)^\circ = 180^\circ$.

2y + 50 + 5y - 17 = 180	Def. of Supplementary Angles.
7y + 33 = 180	Simplify.
7y + 33 - 33 = 180 - 33	-33 from each side.
7y = 147	Simplify.
$\frac{7y}{7} = \frac{147}{7}$	\div each side by 7.
y = 21	Simplify.
7x - 248 + x + 44 = 180	Def. of Supplementary Angles.
8x - 204 = 180	Simplify.
8x - 204 + 204 = 180 + 204	Add 204 to each side.
8x = 384	Simplify.
$\frac{8x}{8} = \frac{384}{8}$	Divide each side by 8.
x = 48	Simplify.

ANSWER:

x = 48; y = 21

SOLUTION:

In the figure, $(5x + 4)^{\circ}$ angle and $(114)^{\circ}$ angle are vertical angles.

Vertical angles are congruent. So, $(5x+4)^\circ = 114^\circ$.

5x + 4 = 114 Def. of Vertical Angles. 5x + 4 - 4 = 114 - 4 -4 from each side. 5x = 110Simplify. $\frac{5x}{5} = \frac{110}{5} \quad \div \text{ each side by 5.}$ x = 22Simplify.

In the figure, $114^{\circ} + (3x - 24)^{\circ} + (2y)^{\circ} = 180^{\circ}$.

114 + 3x - 24 + 2y = 180	Def.of Supplementary Angles.
3x + 2y + 90 = 180	Subtraction.
3(22) + 2y + 90 = 180	Replace x with 22.
66 + 2y + 90 = 180	Mutliply.
2y + 156 = 180	Addition.
2y +156 -156 = 180 -156	Subtract 156 from each side.
2y = 24	Simplify.
$\frac{2y}{2} = \frac{24}{2}$	Divide each side by 2.
y = 12	Simplify.

ANSWER:

x = 22; y = 12

ALGEBRA Use the figure below.

29. If $m \angle KNL = 6x - 4$ and $m \angle LNM = 4x + 24$, find the value of x so that $\angle KNM$ is a right angle.

SOLUTION:

In the figure, $m \angle KNL + m \angle LNM = m \angle KNM$. Since $\angle KNM$ is a right angle, $m \angle KNM = 90$.

$$m \angle KNL + m \angle LNM = m \angle KNM$$
 Def. of Right Angle.

$$(6x - 4) + (4x + 24) = 90$$
 Substitution.

$$10x + 20 = 90$$
 Addition.

$$10x + 20 - 20 = 90 - 20$$
 -20 from each side.

$$10x = 70$$
 Simplify.

$$\frac{10x}{10} = \frac{70}{10}$$
 + each side by 10.

$$x = 7$$
 Simplify.

ANSWER:

7

30. If $m \angle JNP = 3x - 15$ and $m \angle JNL = 5x + 59$, find the value of x so that $\angle JNP$ and $\angle JNL$ are supplements of each other.

SOLUTION:

Supplementary angles are two angles with measures that have a sum of 180. Then, $m \angle JNP + m \angle JNL = 180$.

ANSWER:

17

31. If $m \angle LNM = 8x + 12$ and $m \angle JNL = 12x - 32$, find $m \angle JNP$.

SOLUTION:

The angles in a linear pair are supplementary. So, $m \angle LNM + m \angle JNL = 180$.

 $\angle LNM$ and $\angle JNP$ are vertical angles. Since the vertical angles are congruent, $m\angle LNM = m\angle JNP$.

Substitute x = 10 in $m \angle LNM = 8x + 12$. $m \angle LNM = 8(10) + 12$

= 92So, $\angle JNP = 92$.

ANSWER: 92

<u>1-5 Angle Relationships</u>

32. If $m \angle JNP = 2x + 3$, $m \angle KNL = 3x - 17$, and $m \angle KNJ = 3x + 34$, find the measure of each angle.

SOLUTION:

In the figure, $m \angle KNL + m \angle JNP + m \angle KNJ = 180$.

$$\begin{split} m \angle KNL + m \angle JNP + m \angle KNJ = 180 & \text{Def. of Supplementary Angles.} \\ (3x-17) + (2x+3) + (3x+34) = 180 & \text{Subdittion.} \\ & 8x+20 = 180 & \text{Simplify.} \\ & 8x+20 - 20 = 180 - 20 & \text{Subtract 20 from each side.} \\ & 8x = 160 & \text{Simplify.} \\ & \frac{8x}{8} = \frac{160}{8} & \text{Divide each side by 8.} \\ & x = 20 & \text{Simplify.} \end{split}$$

Find $m \angle JNP$. Substitute x = 20 in $m \angle JNP = 2x + 3$. $m \angle JNP = 2(20) + 3$

$$=43$$

Find $m \angle KNL$. Substitute x = 20 in $m \angle KNL = 3x - 17$. $m \angle KNL = 3(20) - 17$

$$= 43$$

Find $m \angle KNJ$. Substitute x = 20 in $m \angle KNJ = 3x + 34$. $m \angle KNJ = 3(20) + 34$

= 94

ANSWER:

 $m \angle JNP = 43; m \angle KNL = 43; m \angle KNJ = 94$