Find the coordinates of the midpoint of a segment with the given endpoints.



26.

# SOLUTION:

Use the Midpoint Formula.



1

ANSWER:

$$\left(-\frac{1}{2},\frac{1}{2}\right)$$

Suppose *M* is the midpoint of  $\overline{FG}$ . Find the missing measure.

36. 
$$FM = 8a + 1$$
,  $FG = 42$ ,  $a = ?$   
SOLUTION:  
 $F = 8a + 1 M G$   
 $42 - 6$ 

If *M* is the midpoint, then  $FM = \frac{FG}{2}$ 

Substitute.  $FM = \frac{42}{2}$  = 21So, FM = 21.

| FM = FM                       | Given.             |
|-------------------------------|--------------------|
| 8a + 1 = 21                   | Substitution.      |
| 8a + 1 - 1 = 21 - 1           | -1 from each side. |
| 8a = 20                       | Simplify.          |
| $\frac{8a}{8} = \frac{20}{8}$ | ÷ each side by 8.  |
| a = 2.5                       | Simplify.          |

ANSWER:

2.5

**ANALYZE RELATIONSHIPS** Refer to the number line.

40. Find the point X on  $\overline{AE}$  that is  $\frac{1}{6}$  of the distance from A to E.

### SOLUTION:

 $AE = |x_2 - x_1|$ Distance Formula = |2 - (-7)| Replace  $x_2$  with 2 and  $x_1$  with -7. = 191Simplify. = 9 Simplify. The distance from A to E is 6 unit.

To find the point  $\frac{1}{6}$  of the distance from A to E, find  $\frac{1}{\epsilon}AE$ .

$$\frac{1}{6}AE = \frac{1}{6}(9) = 1.5$$

To find the coordinate of point X add 1.5 to the coordinate of A so X is at -5.5 on the number line.

## ANSWER:

-5.5





# SOLUTION:

Since the ratio of the measure is 1:2, 2JX = XK. So, JK = JX + XK = JX + 2JX or 3JX. Thus, JX is  $\overline{3}$  of JK.

Find the distance between the x-coordinates of Jand K.

$$|x_2 - x_1| = |5 - (-1)|$$
 Substitution.  
= 6 Subtraction.  
Multiply the distances by the fractional distance

e.  $6(\frac{1}{3}) = 2$ 

Add this to the x-coordinate of J to determine the x-coordinate of X.

-1+2=1

The *x*-coordinate of *X* is 1.

Then, find the distance between the y-coordinates of J and K.

$$|y_2 - y_1| = |(-3) - 4|$$
 Substitution  
=7 Subtraction.

Multiply the distances by the fractional distance.  $7\left(\frac{1}{3}\right) = \frac{7}{3}$ 

Add this to the y-coordinate of J to determine the v-coordinate of X.

$$4 - \frac{7}{3} = 1\frac{2}{3}$$
. The y-coordinate of X is  $1\frac{2}{3}$ .

Thus, point X is located at  $\left(1, \frac{1}{3}\right)$ 

ANSWER:  $(1, 1\frac{2}{3})$ 

#### **<u>1-3 Locating Points and Midpoints</u>**

50. **GEOMETRY** One endpoint of  $\overline{AB}$  has coordinates (-3, 5). If the coordinates of the midpoint of  $\overline{AB}$  are (2, -6), what is the length of  $\overline{AB}$  ?

# SOLUTION:

First find the length of  $\overline{AB}$ .  $D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$  Distance Formula  $D = \sqrt{(2 - (-3))^2 + (-6 - 5)^2}$  Substitution.  $D = \sqrt{(5)^2 + (11)^2}$  Simplify.  $D = \sqrt{25 + 121}$  Square each term.  $D = \sqrt{146}$  Addition. D = 12.1 Simplify. The distance from A to the midpoint is 12.1, thus the

distance of the whole segment is  $2 \cdot 12.2 = 12.4$ .

ANSWER:

24.2