Example Use a table to write a function rule for h(x) if f(x) = 3x + 2 and $g(x) = x^2 - x$, and h(x) = f(x) - g(x).

Solution

Step 2 Use patterns in the finite differences to write a function rule for n(x).

Since the second finite difference is constant, this is a quadratic function.

Input the values into the calculator and perform a quadratic regression.

Step 3: Write the values into the equation.

 $h(x) = -x^2 + 4x + 2$

Exercises

For questions 1-4, use a table to write a function rule for h(x).

1.			
x	f(x) = 3x + 7	g(x) = 8x - 3	h(x) = f(x) - g(x)
1	10	5	5
2	13	13	0
3	16	21	-5
4	19	29	-10
5	22	37	-15
6	25	45	-20

۷.				
x	$f(x) = 4x^2 - 6$	g(x) = -2x + 12	h(x) = f(x) - g(x)	
-3	30	18	12	
-2	10	16	-6	
-1	-2	14	-16	
0	-6	12	-18	
1	-2	10	-12	
2	10	8	2	

2	
- 5	
~	-

ა.			
x	$f(x) = 0.5x^2 - 3$	g(x) = -x + 5	h(x) = f(x) - g(x)
0	-3	5	-8
1	-2.5	4	-6.5
2	-1	3	-4
3	1.5	2	-0.5
4	5	1	4
5	9.5	0	9.5

4.

2

t.				
x	$f(x) = 2x^3 - 4x$	g(x) = -2x + 12	h(x) = f(x) - g(x)	
-2	-8	16	-24	
-1	2	14	-12	
0	0	12	-12	
1	-2	10	-12	
2	8	8	0	
3	42	6	36	
4	112	4	108	

Study Guide and Intervention Subtracting Functions Using Tables and Equations (cont.)

Example If h(x) = f(x) - g(x), $f(x) = -3(x + 1)^2 + 2$, and $g(x) = (x - 3)^2 - 4$, write the most simplified form of *h*(*x*).

Solution

Step 1 Substitute the equations for f(x) and g(x) into the equation h(x) = f(x) - g(x).

$$\begin{aligned} h(x) &= f(x) - g(x) \\ h(x) &= [-3(x+1)^2 + 2] - [(x-3)^2 - 4] \end{aligned}$$

Step 2 Simplify the polynomial expression.

$$\begin{split} h(x) &= [-3(x+1)^2+2] - [(x-3)^2-4] \\ h(x) &= [-3(x+1)(x+1)+2] - [(x-3)(x-3)-4] \\ h(x) &= [-3(x^2+2x+1)+2] - [(x^2-6x+9)-4] \\ h(x) &= [-3x^2-6x-3+2] - [x^2-6x+9-4] \\ h(x) &= [-3x^2-6x-1] - [x^2-6x+5] \\ h(x) &= -3x^2-6x-1 - x^2+6x-5 \\ h(x) &= (-3x^2-x^2) + (-6x+6x) + (-1-5) \\ h(x) &= -4x^2+0x-6 \\ h(x) &= -4x^2-6 \end{split}$$

Exercises

For problems 5 – 10, write the simplified form of h(x) if h(x) = f(x) - g(x).

5.	f(x) = 0.5x + 15	6. $f(x) = 2x^2 + 7$	7.	$f(x) = x^3 - 2x$
	g(x) = -3x - 5	$g(x) = x^2 + 2x - 1$		$g(x) = x^2 + 5$

8.	f(x) = 8x + 13	9. $f(x) = x^3 + 1$ 10.	f(x) = 5x - 3
	$g(x) = (x - 5)^2$	g(x) = 5x + 9	$g(x) = 0.5x^2 - 4$