Study Guide and Intervention *Adding Functions Using Tables and Equations*

Use a table to write a function rule for n(x) if n(x) = f(x) + g(x) + h(x).

Solution

Example

Step 1 Calculate the finite differences for the table

Step 2 Use patterns in the finite differences to write a function rule for n(x).

Since the first finite difference is constant, this is a linear function.

The slope of the function is found by $\frac{\Delta n(x)}{\Delta x} = \frac{\$555}{30 \text{ hrs}} = \$18.50 \text{ per hour}$

The y-intercept or initial value is found by subtracting the finite difference from the first value: \$2780 - \$555 = \$2225

Step 3: Combine the slope and the y-intercept to generate the formula.

N(x) = 18.5x + 2225

Exercises

For questions 1-4, Use a table to write a function rule for h(x) if h(x) = f(x) + g(x).

1.							
x	-3	-2	-1	0	1	2	3
f(x)	-22	-16	-10	-4	2	8	14
g(x)	9	7	5	3	1	-1	-3
h(x)	-13	-9	-5	-1	3	7	11

2.

4							
x	1	2	3	4	5	6	7
f(x)	3	10	21	36	55	78	105
g(x)	-4	-1	4	n	20	31	44
h(x)	-1	9	25	47	75	109	149

3.

x	0	1	2	3	4	5	6
f(x)	8	11	16	23	32	43	56
g(x)	2	1	-2	-7	-14	-23	-34
h(x)	10	12	14	16	18	20	22

4.							
x	-1	0	1	2	3	4	5
f(x)	-2	-6	-2	10	30	58	94
g(x)	3	6	9	12	15	18	21
h(x)	1	0	7	22	45	76	115

Study Guide and Intervention Adding Functions Using Tables and Equations (cont.)

Example If h(x) = f(x) + g(x), $f(x) = (x - 2)^3 + 7$, and $g(x) = 2(x + 3)^2$, write the most simplified form of h(x).

Solution

Step 1 Substitute the equations for f(x) and g(x)into the equation h(x) = f(x) + g(x).

$$\begin{split} h(x) &= f(x) + g(x) \\ h(x) &= [(x-2)^3 + 7] + [2(x+3)^2] \end{split}$$

Step 2 Simplify the polynomial expression.

Exercises

For problems 5 – 10, write the simplified form of h(x) if h(x) = f(x) + g(x).

6. $f(x) = x^3 + 5x^2 - 1$ 7. $f(x) = 3(x-2)^2$ $g(x) = 2(x+1)^2 + 6$ 5. $f(x) = 2x^2 + 3x$ $a(x) = x^2 + 2x + 7$ $q(x) = x^2 - x + 4$

8. f(x) = 7x - 119. $f(x) = x^3 + 2x^2 - x - 5$ **10.** f(x) = -2x + 7q(x) = -4x + 9 $q(x) = -(x + 2)^2 + 4$ $q(x) = 3x^2 + 4x - 5$

Discount City gives a 15% discount on all merchandise on Tuesdays. The sales tax rate is 5%.

11. Write a function, f(x), to represent the discounted price of merchandise, x, on Tuesdays.

12. Write a function, g(x), to represent the amount of sales tax on the discounted merchandise, x.

13. Write a function, h(x), that can be used to calculate the total cost of discounted merchandise, including sales tax, by combining f(x) and g(x).

 $h(x) = (x - 2)^3 + 7 + 2(x + 3)^2$ h(x) = (x-2)(x-2)(x-2) + 7 + 2(x+3)(x+3) $h(x) = (x^2 - 4x + 4)(x - 2) + 7 + 2(x^2 + 6x + 9)$ $h(x) = (x^3 - 4x^2 + 4x - 2x^2 + 8x - 8) + 7 + 2x^2 + 12x + 18$ $h(x) = (x^3 - 6x^2 + 12x - 8) + 7 + 2x^2 + 12x + 18$ $h(x) = x^3 - 6x^2 + 2x^2 + 12x + 12x - 8 + 7 + 18$ $h(x) = x^3 - 4x^2 + 24x - 1 + 18$ $h(x) = x^3 - 4x^2 + 24x + 17$