

Rational	Eur	otio	n 0
KOHOHOH		1(::11(-)	115

- $\,^\circ\,$ A rational function is a function composed of $\,$ a ratio of two polynomial functions, p(x) and q(x).
 - $r\{x\} = \frac{p(x)}{q(x)}$
- \circ For a rational function, the general form is $f(x) = \frac{a}{bx^{-}} + d$, where a, b, c, and d are real numbers.
- The rational parent function is $f(x) = \frac{1}{x}$. This is also called an inverse variation function.
- $^{\circ}$ The full family of rational functions is generated by applying transformations to the Rational parent function
- Transformations are applied using parameters that are multiplied or added to the independent variable in the functional relationship

Changes in a

- The parameter a influences the vertical stretch or compression of the graph of the rational function.
- $^{\circ}\,$ If $\,|\,\alpha\,|\,$ > 1, then the y-values are multiplied by a factor of α to vertically stretch the graph
- \circ If 0 < \mid a \mid < 1, then the y-values are multiplied by a factor of a to vertically compress the graph
- If a < 0, then the graph will be reflected across the x-axis.

\sim 1					
('h	ar	1	\sim	IIO	h
Ch	(11	1(1	=	11 1	
· ·	<u> </u>	. 9	-		\sim

- $_{\circ}$ The parameter b influences the horizontal stretch or compression of the graph of the rational function.
- \circ If |b| > 1, then the x-values are multiplied by a factor of $\frac{1}{|b|}$ to horizontally compress the graph
- \circ If 0 < |b| < 1, then the x-values are multiplied by a factor of $\frac{1}{|b|}$ to horizontally stretch the graph
- $_{\circ}\,$ If b < 0, then the graph will be reflected across the y-axis

Changes in c

- $\,\circ\,$ The parameter c, like b, influences the horizontal translation of the graph of the rational function.
- Note that in the general form, the sign in front of the c is negative. This means that when reading the value of c from the equation, you should read the opposite sign from what is given in the equation.
- \circ If c > 0, then the graph will translate $\, | \, \frac{c}{b} \, | \,$ to the right.
- \circ If c < 0, then the graph will translate $\mid \frac{c}{b} \mid$ to the left.

Changes in d

- The parameter d influences the vertical translation of the graph of the rational function.
- $\circ~$ If d > 0, then the graph of the rational function will translate \mid d $\mid~$ units up.
- If d < 0, then the graph of the rational function will translate | d | units down.

Asymptotes

- \circ Each rational function has two asymptotes: one horizontal and one vertical
- The horizontal asymptote is governed by vertical parameters changes. A vertical translation moves the asymptote d units and a vertical dilation does not move the asymptote.
- The vertical asymptote is governed by horizontal parameters changes. A horizontal translation moves the asymptote c units and a horizontal dilation moves the asymptote closer or away from the x-axis by a factor of $\frac{1}{b}$.
 - horizontal asymptote: y = d
 - vertical asymptote: $x = \frac{c}{b}$

Domain and Range

- A rational function involves the ratio of two polynomial functions. Since the function in the denominator can never equal 0, any values of x that cause the denominator to equal 0 are excluded from the domain. Therefore, the domain will always be all real numbers minus $\frac{c}{b}$, or $\{x \mid x \in \mathbb{R}, x \neq \frac{c}{b}\}$
- $^\circ$ The range is restricted by the horizontal asymptote, y = d. Therefore, y = d must be excluded from the range of a rational function. {y | y \in \mathbb{R}}, y \neq d}

X- and Y-intercepts

• A rational function has at most one x-intercepts. If it exists, the x-intercept is located at:

- $-\frac{cd-a}{bd}\cdot 0)$ The values of b and d may not equal 0. When b = 0, the function does not exist since there is no x-term in the function. When d = 0, the x-axis is an asymptote and the x-intercept does not exist.
- A rational function has at most one y-intercepts. If it exists, the y-intercept is located at:

 $\circ (0, \frac{a}{-c} + d)$

 \circ When c = 0, the y-axis is an asymptote and they-intercept does not exist.

Evam	n	00
Exam	ИI	C^{2}

• What transformations of the rational parent function, $f(x) = \frac{1}{x'}$, will result in the graph of the rational function g(x) = $-\frac{3}{x-2} + 1.5$?

Examples

= Step 1: Rewrite the equation of g(x) in general form y = $\frac{a}{bx-c}$ + d to determine the values of the parameters a, b, c, and d.

$$g(x) = \frac{a}{bx-c} + d$$

$$g(x) = \frac{3}{x-2} + 1.5$$

$$g(x) = \frac{-3}{1x-2} + 1.5$$

$$G(x) = \frac{-3}{1x-2} + 1.5$$

$$G(x) = -3, b = 1, c = 2, d = 1.5$$

Examples

- Step 2: Use the parameters to describe the transformations of the rational parent function f(x) that are necessary to produce g(x).
 a = -3, so there is vertical stretch by a factor of 3; a is negative, so it is reflected over the x-axis
- \circ b = 1, there is no change to the graph
- \circ C = 2, so there is a horizontal shift $\frac{2}{1}$ = 2 units to the right
- o d = 1.5, so there is a vertical shift 1.5 units up

	_
Examples	
Examples	
- Identify the key attributes of $y=-\frac{12}{3x}+2$, including domain and range (including asymptotes), x- and y-intercepts. Write the domain and range in set builder notation.	
intercepts, write the domain and range in set builder notation.	
Examples	
\circ Step 1: Determine the domain and range of y = $\frac{12}{3x} + 2$	
∘ The domain excludes $\frac{c}{b}$	
$\circ \frac{c}{b} = \frac{0}{3} = 0$	
- {x x ∈ R, x ≠ 0}	
∘ The range excludes d ∘ d = 2	
∘ {y y ∈ ℝ, y ≠ 2}	
	1
Examples	
 Step 2: Determine if the function has an x-intercept. 	
Use the calculator to determine the x-intercept.	
∘ x-int; {-2, 0}	
Step 3: Determine if the function has a y-intercept. Use the calculator to determine the y-intercept.	
· y-int none	