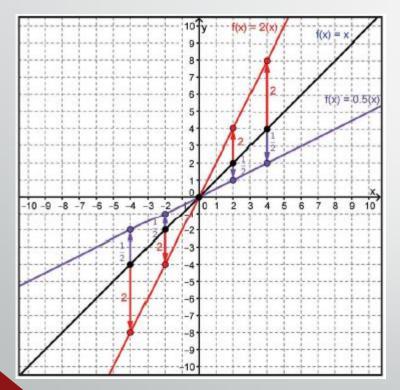
Transforming and Analyzing Linear Functions

Linear Functions

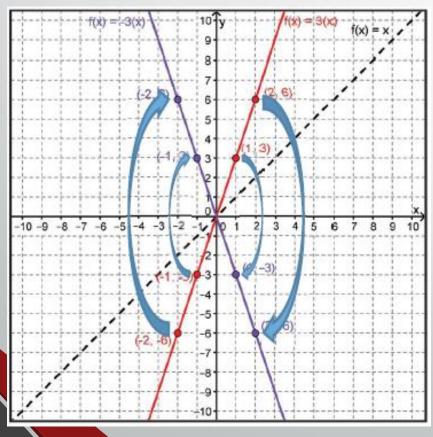
- For a linear function, the general form is f(x) = a(bx c) + d, where a, b, c, and d are real numbers.
- The linear parent function is f(x) = x
- The full family of linear functions is generated by applying transformations to the linear parent function
- Transformations are applied using parameters that are multiplied or added to the independent variable in the functional relationship

- The parameter *a* influences the vertical stretch or compression of the graph of the line.
- If |a| > 1, then the y-values are multiplied by a factor of a to vertically stretch the graph
- If o < |a| < 1, then the y-values are multiplied by a factor of a to vertically compress the graph



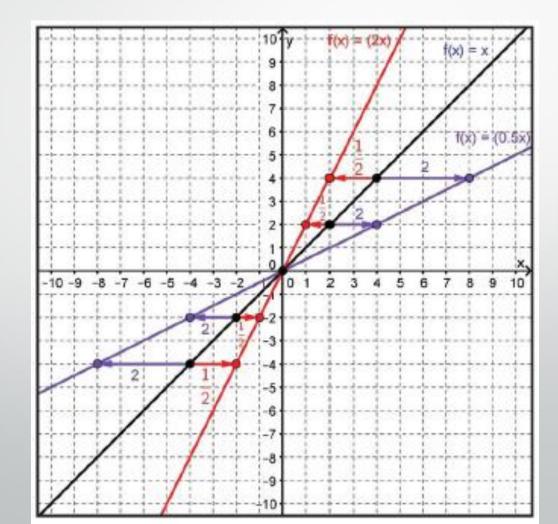
x	f(x) = x	f(x)=2(x)	f(x) = 0.5(x)
-4	-4	-8	-2
-2	-2	-4	-1
0	0	0	0
2	2	4	1
4	4	8	2
			1
	×	2 × 0.5	

• If *a* < 0, then the line will be reflected across the x-axis



x	f(x) = 3 (x)	f(x) = -3(x)	
-2	-6	6	
-1	-3	3	
0	0	0	
1	3	-3	
2	6	-6	
× -1			

- The parameter *b* influences the horizontal stretch or compression of the graph of the line.
- If |b| > 1, then the x-values are multiplied by a factor of ¹/_{|b|} to horizontally compress the graph
- If o < |b| < 1, then the x-values are multiplied by a factor of ¹/_{|b|} to horizontally stretch the graph



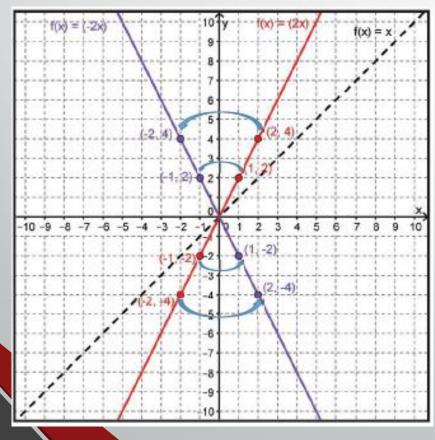
x	f(x) = x	x	f(x) = (2x)
-4	-4	-2	-4
-2	-2	-1	-2
0	0	0	0
2	2	1	2
4	4	2	4

X-values are multiplied by $\frac{1}{2}$ in order to generate the same y-value. This multiplication results in a horizontal compression of the graph.

X-values are multiplied by 2 in order to generate the same y-value. This multiplication results in a horizontal stretch of the graph.

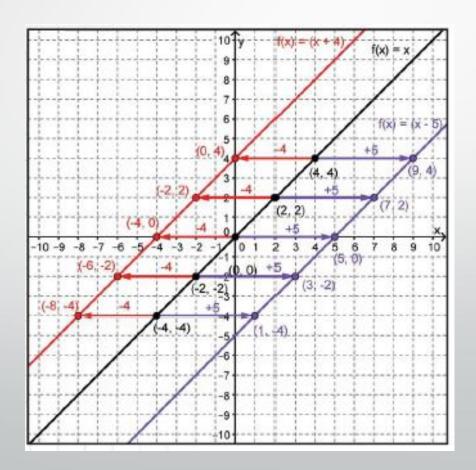
x	f(x) = x	x	f(x) = (0.5x)
-4	-4	-8	-4
-2	-2	-4	-2
0	0	0	0
2	2	4	2
4	4	8	4

• If *b* < 0, then the line will be reflected across the y-axis



x	f(x) = (2x)	f(x) = (-2x)
-2	-4	4
-1	-2	2
0	0	0
1	2	-2
2	4	-4

- The parameter c, like b, influences the horizontal translation of the graph of the line.
- Note that in the general form, the sign in front of the c is negative. This means that when reading the value of c from the equation, you should read the opposite sign from what is given in the equation.
- If c > 0, then the graph will translate $\left|\frac{c}{b}\right|$ to the right.
- If c < 0, then the graph will translate $\left|\frac{c}{b}\right|$ to the left.



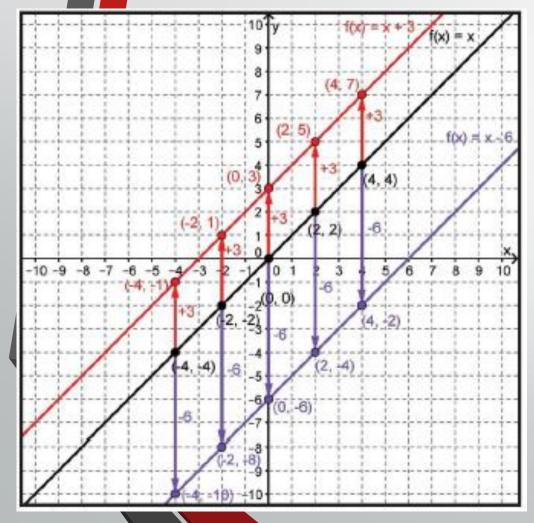
X-values are increased by 5 in order to generate the same y-value. This addition results in a horizontal translation of the graph to the right.

x	f(x) = x	x	f(x) = (x-5)
-4	-4	1	-4
-2	-2	3	-2
0	0	5	0
2	2	7	2
4	4	9	4

x	f(x) = x	x	f(x) = (x+4)
-4	-4	-8	-4
-2	-2	-6	-2
0	0	-4	0
2	2	-2	2
4	4	0	4

X-values are decreased by 4 in order to generate the same y-value. This subtraction results in a horizontal translation of the graph to the left.

- The parameter *d* influences the vertical translation of the graph of the line.
- If d > 0, then the graph of the line will translate |d| units up.
- If d < o, then the graph of the line will translate |d| units down.



x	f(x) = x	f(x) = x - 6	f(x) = x + 3		
-4	-4	-10	-1		
-2	-2	-8	1		
0	0	-6	3		
2	2	-4	5		
4	4	-2	7		
-6 +3					

X- and Y-intercepts

- If the equation of the line is in the general form, y = a(bx c) + d then:
 - the x-intercept becomes $(\frac{ac-d}{ab}, o)$
 - the y-intercept becomes (o, -ac + d)

Set Builder Notation

- The domain of a linear function is all real numbers. Using set builder notation the domain of a linear function is written as $\{x \mid x \in \mathbb{R}\}$
- The range of a linear function is all real numbers. Using set builder notation the domain of a linear function is written as {f(x) | f(x) ∈ ℝ}

• What transformations of the linear parent function, f(x) = x, will result in the graph of the linear function $g(x) = -3(0.5x + 4) + \frac{2}{5}$?

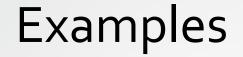
 Step 1: Rewrite the equation of g(x) in general form to determine the values of the parameters a, b, c, and d.

•
$$g(x) = -3(0.5x + 4) + \frac{2}{5}$$

• $-3(0.5x - (-4) + \frac{2}{5})$
So, $a = -3$, $b = 0.5$, $c = -4$, and $d = \frac{2}{5}$

- Step 2: Use the values of the parameters to describe the transformations of the linear parent function f(x) that are necessary to produce g(x).
- a = -3; so |a| > 1, then the y-values are multiplied by a factor of -3 to vertically stretch the graph and because *a* is negative, the graph is reflected over the x-axis
- b = 0.5; so o < |b| < 1, then the x-values are multiplied by a factor of ¹/_{|0.5|} = 2 to horizontally stretch the graph
- c = -4, so c < 0, then the graph will translate $\left|\frac{-4}{0.5}\right| = 8$ to the left
- $d = \frac{2}{5}$, so d > 0, then the graph of the line will translate $\left|\frac{2}{5}\right|$ units up

• What transformations of the linear parent function, f(x) = x, will result in the graph of the linear function $g(x) = \frac{1}{4}(-6x - 5) + 1$?



 Step 1: Rewrite the equation of g(x) in general form to determine the values of the parameters a, b, c, and d.

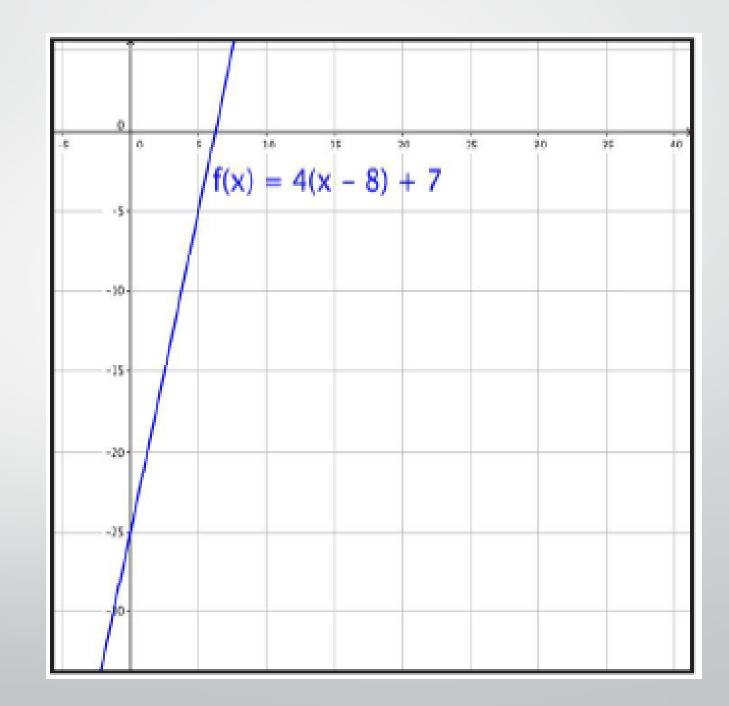
• So,
$$a = \frac{1}{4}$$
, $b = -6$, $c = 5$, and $d = 1$

 Step 2: Use the values of the parameters to describe the transformations of the linear parent function f(x) that are necessary to produce g(x).

• $a = \frac{1}{4}$; o < |a| < 1, then the y-values are multiplied by a factor of $\frac{1}{4}$ to vertically compress the graph

- b = -6; so |b| > 1, then the x-values are multiplied by a factor of $\frac{1}{|-6|} = \frac{1}{6}$ to horizontally compress the graph
- c = 5, so c < 0, then the graph will translate $\left|\frac{5}{-6}\right| = \frac{5}{6}$ to the right
- d = 1, so d > 0, then the graph of the line will translate 1 units up

Identify the domain, range, xintercept and y-intercept of the linear function described by the equation and graph shown. Write the domain and range as inequalities and in set builder notation.



Step 1: Determine the domain and range

- Since it is a linear function, the domain and range are both all real numbers
 - Domain: inequality, $-\infty < x < \infty$; set builder, $\{x \mid x \in \mathbb{R}\}$
 - Range: inequality, $-\infty < y < \infty$; set builder, $\{f(x) \mid f(x) \in \mathbb{R}\}$

• Step 2: Determine the x-intercept

• the x-intercept becomes
$$(\frac{ac-d}{ab}, 0)$$

• $a = 4, b = 1, c = 8, d = 7$
• $(\frac{4*8-7}{4*1}, 0)$
• $(\frac{32-7}{4}, 0)$
• $(\frac{25}{4}, 0)$ or $(6.25, 0)$

Step 3: Determine the y-intercept

the y-intercept becomes (o, -ac + d)