Modeling Cubic Functions

For questions 1-6, determine whether the set of data represents a linear, exponential, quadratic or cubic function.

2.

x	у
0	-6
1	1
2	16
3	39
4	70
5	109

SOLUTION:

∆y = 7	$\Delta^2 y = 8$
Δy = 15	$\Delta^2 y = 8$
∆y = 23	$\Delta^2 y = 8$
$\Delta y = 31$	$\Delta^2 y = 8$
∆y = 39	

The second finite differences are all 8, so the data represents a quadratic function

ANSWER:

Quadratic function

4.

x	y
0	5
1	10
2	35
3	92
4	193
5	350

SOLUTION:

$\Delta y = 5$	$\Delta^2 y = 20$	Δ^3 y = 12
Δy = 25	$\Delta^2 y = 32$	Δ^3 y = 12
$\Delta y = 57$	$\Delta^2 y = 44$	Δ^3 y = 12
Δy = 101	Δ^2 y = 56	
Δ y = 157		

The third finite differences are all 12, so the data represents a cubic function

ANSWER:

Cubic function

6.

x	y
0	-8
1	3
2	44
3	145
4	336
5	647

SOLUTION:

$\Delta y = 11$	$\Delta^2 y = 30$	Δ^3 y = 30
$\Delta y = 41$	$\Delta^2 y = 60$	$\Delta^3 y = 30$
∆y = 101	$\Delta^2 y = 90$	$\Delta^3 y = 30$
∆y = 191	Δ^2 y = 120	
∆y = 311		

The third finite differences are all 30, so the data represents a cubic function

ANSWER:

Cubic function

For questions 7-12, the data sets shown in the tables represent cubic functions. Use finite differences to determine the function that relates the variables.

8.

x	у
0	3
1	7
2	1
3	-27
4	-89
5	-197

SOLUTION:

$\Delta y = 4$	$\Delta^2 y$ = -10	$\Delta^3 y = -12$
∆y = -6	Δ^2 y = -22	$\Delta^3 y = -12$

 $\Delta y = -28 \qquad \Delta^2 y = -34 \qquad \Delta^3 y = -12$ $\Delta y = -62 \qquad \Delta^2 y = -46$

The third finite differences are all -12, so the data represents a cubic function

 $\Delta^{3}y = -12$, 6a = -12; a = -2 $\Delta^{2}y = -10$, 6a + 2b = -10; -12 + 2b = -10; 2b = 2; b = 1 $\Delta y = 4$, a + b + c = 4; -2 + 1 + c = 4; c = 5 y-int = d = 3 ANSWER:

10.

,	x	y
	0	-4
	1	-9
	2	-48
	3	=157
	4	-372
	5	-729

SOLUTION:

 $y = -2x^3 + 1x^2 + 5x + 3$

∆y = -5	$\Delta^2 y = -34$	Δ^3 y = -36
∆y = -39	$\Delta^2 y = -70$	$\Delta^3 y = -36$
∆y = -109	$\Delta^2 y$ = -106	Δ^3 y = -36
∆y = -215	$\Delta^2 y = -142$	
$\Delta y = -357$		

The third finite differences are all -36, so the data represents a cubic function

 $\Delta^{3}y = -36, 6a = -36; a = -6$ $\Delta^{2}y = -34, 6a + 2b = -34; -36 + 2b = -34; 2b = 2; b = 1$ $\Delta y = -5, a + b + c = -5; -6 + 1 + c = -5; c = 0$ y-int = d = -4 ANSWER: y = -6x³ + x² - 4

x	y
0	-9
1	-3
2	39
3	153
4	375
5	741

SOLUTION:

∆y = 6	$\Delta^2 y = 36$	Δ^3 y = 36
∆y = 42	$\Delta^2 y = 72$	Δ^3 y = 36
∆y = 114	Δ^2 y = 108	Δ^3 y = 36
∆y = 222	Δ^2 y = 144	
∆y = 366		

The third finite differences are all 36, so the data represents a cubic function

Δ^{3} y = 36, 6a = 36; a = 6
$\Delta^2 \gamma$ = 36, 6a + 2b = 36; 36 + 2b = 36; 2b = 0; b = 0
$\Delta y = 6$, a + b + c = 6; 6 + 0 + c = 6; c = 6
y-int = d = x-9
ANSWER:
$y = 6x^3 - 9$

For questions 13-17, use the following information.

A box is created from a 20-inch by 24-inch rectangular piece of cardboard by cutting congruent squares from each corner. The squares are cut in 1-inch increments. The resulting sides are folded up and taped to form a rectangular prism (open box). The volume of the box is a function of the side length of the square removed from each corner. The table below relates the volume of the box to the side length of the square.

12.

SIDE LENGTH x	VOLUME y
0	0
1	396
2	640
3	756
4	768
5	700
6	576
7	420
8	256
9	108

14. What side length of the square produces a tray with the greatest volume?

SOLUTION:

Look at the y-values for the largest number, then give the corresponding x-value.

ANSWER:

4 inches

For questions 18 – 22, use the scenario below.

An employee at a toy store is creating a display of soccer balls in the shape of a tetrahedron, or an equilateral triangle pyramid.

The table below shows the total number of soccer balls at each level of the display, with Level 1 being at the top of the display.

LEVEL,	TOTAL NUMBER OF SOCCER BALLS, y
1	1
2	4
3	10
4	20
5	35
6	56

18. Write a function using finite differences that models the data in the table.

SOLUTION:

∆y = 1	$\Delta^2 y = 2$	Δ^3 y = 1
∆y = 3	$\Delta^2 y = 3$	Δ^3 y = 1
∆y = 6	$\Delta^2 y = 4$	Δ^3 y = 1
∆y = 10	$\Delta^2 y = 5$	Δ^3 y = 1
∆y = 15	$\Delta^2 y = 6$	

 $\Delta y = 21$

The third finite differences are all 1, so the data represents a cubic function

 $\Delta^{3}y = 1, 6a = 1; a = 1/6$ $\Delta^{2}y = 2, 6a + 2b = 2; 1 + 2b = 2; 2b = 1; b = 1/2$ $\Delta y = 1, a + b + c = 1; 1/6 + 1/2 + c = 1; c = 1/3$ y-int = d = 0 ANSWER: $y = \frac{1}{6}x^{3} + \frac{1}{2}x^{2} + \frac{1}{3}x$

20. What does the range (y-values) of the function represent in the situation?

ANSWER:

The total number of soccer balls

22. How many soccer balls would be needed to build a display 10 levels high?

SOLUTION:

Make a table of the function, $y = \frac{1}{6}x^3 + \frac{1}{2}x^2 + \frac{1}{3}x$ and look at where the x-value is 10.

ANSWER:

220 soccer balls