Study Guide and Intervention

Graphing Inequalities

Graph Linear Inequalities A linear inequality, like $y \ge 2x - 1$, resembles a linear equation, but with an inequality sign instead of an equals sign. The graph of the related linear equation separates the coordinate plane into two half-planes. The line is the boundary of each half-plane.

To graph a linear inequality, follow these steps.

- 1. Graph the boundary; that is, the related linear equation. If the inequality symbol is \leq or \geq , the boundary is solid. If the inequality symbol is < or >, the boundary is dashed.
- **2.** Choose a point not on the boundary and test it in the inequality. (0, 0) is a good point to choose if the boundary does not pass through the origin.
- 3. If a true inequality results, shade the half-plane containing your test point. If a false inequality results, shade the other half-plane.

Example

Graph $x + 2y \ge 4$.

The boundary is the graph of x + 2y = 4.

Use the slope-intercept form, $y = -\frac{1}{2}x + 2$, to graph the boundary line.

The boundary line should be solid.

$$0 + 2(0) \stackrel{?}{\geq} 4$$
 $(x, y) = (0, 0)$

 $0 \ge 4$

Shade the region that does *not* contain (0, 0).

Exercises

Graph each inequality.

1.
$$y < 3x + 1$$

2.
$$y \ge x - 5$$

3.
$$4x + y \le -1$$

4.
$$y < \frac{x}{2} - 4$$

5.
$$x + y > 6$$

6.
$$0.5x - 0.25y < 1.5$$

