Algebraic Reasoning Unit 4 Bundle 3 Summative Assessment

Name:	Date:

Multiple Choice

1. The function h(x) is the result of an operation on f(x) and g(x). Find the function values for h(x) in the table, then use finite differences to determine a function rule for h(x).

X	1	2	3	4	5	6	7
$f(x) = x^2 + 17$	18	21	26	33	42	53	66
g(x) = 4x	4	8	12	16	20	24	28
h(x) = (f+g)(x)							

A
$$h(x) = 4x^3 + 17$$

B
$$h(x) = x^2 + 4x + 17$$

C
$$h(x) = x^2 + 21x$$

D
$$h(x) = x^2 + 17(4x)$$

2. Determine the operation that was used to create h(x).

X	-2	-1	0	1	2
f(x)	-9	-3	3	9	15
g(x)	-6	-3	0	3	6
h(x)	-3	0	3	6	9

- **A** Addition
- **B** Subtraction
- **C** Multiplication
- **D** Division

3. Maddy earns a monthly salary of \$640 at a shipping company. She also earns a bonus of \$50 for each new customer she gets during the month. Her salary is then reduced by 25% for taxes and insurance. Which function best defines Maddy's net pay if s(x) = 640 + 50x represents her gross monthly salary, where x is the number of new customers, and w(x) = 0.25(640+50x) represents her withholdings?

A
$$(s + w)(x) = 640 + 87.5x$$

B $(w - s)(x) = -480 - 37.5x$

C
$$(s - w)(x) = 480 + 37.5x$$

D
$$(s \cdot w)(x) = (640 + 50x)(0.25(640+50x))$$

4. David is building a scale model racing fence around the rectangular display mat for his model cars. The design of the mat calls for a length of 8 inches more than twice the width. The cost of the fence material is \$0.50 per inch. If x represents the width of the mat, write a function, c(x), to represent the cost of the fencing.

A
$$c(x) = 6x + 16$$

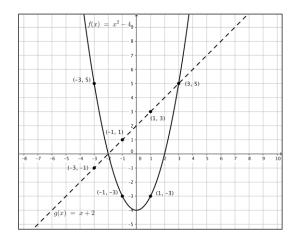
B
$$c(x) = 3x + 16$$

C
$$c(x) = (0.5)(2x^2 + 8x)$$

D
$$c(x) = (0.5)(6x + 16)$$

5. Use the table for the functions f(x) and g(x) to find the values for the quotient $h(x) = f(x) \div g(x)$. Then use finite differences to write the function rule for h(x).

X	-2	-1	0	1	2
$f(x)=2x^2+5x-3$	-5	-6	-3	4	15
g(x) = x + 3	1	2	3	4	5
h(x)					


A
$$h(x) = 2x - 1$$

B
$$h(x) = 2x - 5$$

C
$$h(x) = 2x - 3$$

$$\mathbf{D} \quad h(x) = 2x$$

6. Use the graph, $f(x) = x^2 - 4$, and g(x) = x + 2 to determine values for $h(x) = f(x) \div g(x)$ and write the equation for h(x).

X	-3	-1	1	3
f(x)				
g(x)				
h(x)				

A
$$h(x) = x - 2$$

B
$$h(x) = -2x - 2$$

C
$$h(x) = 2x - 5$$

D
$$h(x) = x + 2$$

7. Find $h(x) = f(x) \div g(x)$ and $j(x) = g(x) \div f(x)$ for $f(x) = 3x^2 + 2x - 8$ and g(x) = x + 2.

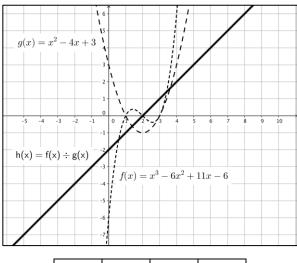
A
$$h(x) = 3x + 4$$
; $j(x) = \frac{1}{3x + 4}$

B
$$h(x) = 3x - 4$$
; $j(x) = \frac{1}{3x - 4}$

C
$$h(x) = 3x - 4$$
; $j(x) = \frac{1}{3x + 4}$

D
$$h(x) = 3x + 4$$
; $j(x) = \frac{1}{3x - 4}$

8. If f(x) = x + 1.5 and $g(x) = 5x^2$, what is g(f(x))?


A
$$g(f(x)) = 5x^3 + 7.5x^2$$

B
$$g(f(x)) = 5x^2 + 11.25$$

C
$$g(f(x)) = 5x^2 + 15x + 11.25$$

C
$$g(f(x)) = 5x^2 + 15x + 11.25$$

D $g(f(x)) = 5x^2 + 15x + 2.25$

9. Use the graph and values for $f(x) = x^3 - 6x^2 + 11x - 6$ and $g(x) = x^2 - 4x + 3$ to complete the values for $h(x) = f(x) \div g(x)$ in the table. Choose the equation representing the values for function $h(x) = f(x) \div g(x)$.

X	0	2	4
h(x)			

A
$$h(x) = 2x + 1$$

B
$$h(x) = 2x$$

C
$$h(x) = x + 1$$

D
$$h(x) = x - 2$$

10. The band is selling t-shirts as a fundraiser for new uniforms. The cost to produce the t-shirts is \$4 per shirt plus a one-time design fee of \$100. The team is selling the shirts for \$10 apiece. The function c(x) = 4x + 100 can be used to represent the cost of producing x number of t-shirts. The function r(x) = 10x can be used to represent the amount of revenue the team would receive for selling x t-shirts. Choose the function p(x), in terms of c(x) and c(x), that can be used to calculate the profit the team would make from selling c(x) t-shirts.

A
$$p(x) = r(x) + c(x)$$

 $p(x) = 14x + 100$

B
$$p(x) = c(x) - r(x)$$

 $p(x) = -6x + 100$

C
$$p(x) = r(x) - c(x)$$

 $p(x) = 6x - 100$

D
$$p(x) = r(x) \cdot c(x)$$

 $p(x) = 10x(4x + 100)$