

OU TRY IT! #4

Identify and compare the domain and range of f(x) = (0.5x + 1) - 2 and the domain and range of $g(x) = -0.5(x+1)^2 - 2$. Write the domain and range of each function as inequalities, as intervals, and in set builder notation.

PRACTICE/HOMEWORK

- 1. For the quadratic function $y = a(bx - c)^2 + d$, which of the parameter values (a, b, c, d)or *d*) will produce the transformation described?
 - horizontal stretch or compression
 - a translation upward or downward
 - vertical stretch or compression
 - a translation left or right

For questions 2 - 7, describe what transformations of the quadratic parent function, $f(x) = x^2$ will result in the graph of the given function.

2.
$$g(x) = 2(x-3)^2$$

3.
$$h(x) = -\frac{1}{4}(x)^2 + 5$$

4.
$$g(x) = (4x - 7)^2$$

5.
$$h(x) = \left(\frac{1}{2}x\right)^2 - 1$$

6.
$$g(x) = -3(x+2)^2 + 6$$

6.
$$g(x) = -3(x+2)^2 + 6$$
 7. $h(x) = \frac{1}{3}(2x-5)^2 - 4$

- **8.** The graph of g(x) is produced by transforming the quadratic parent function, $f(x) = x^2$, by vertically stretching its graph by a factor of 3 and translating it 7.5 units upward. Determine the equation that represents g(x).
- **9.** The graph of h(x) is produced by transforming the quadratic parent function, $f(x) = x^2$, by reflecting its graph over the x-axis, and translating it 3 units to the left and 11 units downward. Determine the equation that represents h(x).

For each quadratic function given in questions 10-12 identify the vertex, and determine whether it is a maximum or a minimum value.

10.
$$g(x) = -(x - 1.5)^2 - 4$$
 11. $g(x) = -3(4x)^2 + 7$

11.
$$g(x) = -3(4x)^2 + 7$$

12.
$$g(x) = (2x - 5)^2 + 3$$

For questions 13 - 17 identify the domain, range, x-intercept(s), y-intercept, and vertex of each quadratic function. Write the domain and range in three different ways: as an inequality, interval, and in set-builder notation.

13.

14.

\boldsymbol{x}	$f(x) = -(x+1)^2 + 9$
- 5	-7
-4	0
-3	5
- 2	8
-1	9
0	8
1	5
2	0

15.
$$g(x) = 2(x+1)^2 - 8$$

17.

16.

\boldsymbol{x}	$g(x) = 2(x+3)^2 - 5$
- 5	3
-4	-3
-3	-5
-2	-3
-1	3
0	13
1	27

For questions 18 - 19 identify and compare the x-intercepts of the following sets of functions:

18.
$$f(x) = 3(x-3)$$
 and $g(x) = (x-1)^2 - 4$

18.
$$f(x) = 3(x-3)$$
 and $g(x) = (x-1)^2 - 4$ **19.** $f(x) = -(x+6)^2$ and $h(x) = -0.5(x+6) - 1$

For questions 20 - 21 identify and compare the y-intercepts of the following sets of functions:

20.
$$h(x) = 2(x+3)^2 - 1$$
 and $g(x) = 2(x+3) - 1$ **21.** $f(x) = \frac{1}{3}(x-6) - 3$ and $g(x) = -4(x-\frac{1}{2})^2$

21.
$$f(x) = \frac{1}{3}(x-6) - 3$$
 and $g(x) = -4(x-\frac{1}{2})^2$

For questions 22 – 23 identify and compare the domain and range of the following sets of functions:

22.
$$g(x) = \frac{1}{2}(x+4)^2 + 3$$
 and $f(x) = \frac{1}{2}(x+4) + 3$ **23.** $h(x) = -(2x-1)^2 + 6$ and $f(x) - (2x-1) + 6$

23.
$$h(x) = -(2x-1)^2 + 6$$
 and $f(x) - (2x-1) + 6$