<u>Writing Quadratic Functions $\Delta^2 y =$ </u>

For questions 1-8, use finite differences and mental math, as appropriate, to determine if the data sets shown in the tables below represent a linear, exponential, quadratic, or other type of function.

2.

x	y = f(x)
1	5
2	11
3	17
4	23
5	29

SOLUTION:

 $\Delta y = 11 - 5 = 6$

 $\Delta y = 17 - 11 = 6$

 $\Delta y = 23 - 17 = 6$

 $\Delta y = 29 - 23 = 6$

The first finite differences are all 6, so the data represents a linear function

ANSWER:

Linear function

4.

x	y = f(x)
1	5
2	14
3	29
4	50
5	77

SOLUTION:

$\Delta y = 14 - 5 = 9$	$\Delta^2 y = 15 - 9 = 6$
$\Delta y = 29 - 14 = 15$	$\Delta^2 y = 21 - 15 = 6$
$\Delta y = 50 - 29 = 21$	$\Delta^2 y = 27 - 21 = 6$
∆y = 77 – 50 = 27	

The second finite differences are all 6, so the data represents a quadratic function

ANSWER:

Quadratic function

6.

x	y = f(x)
1	5
2	8
3	13
4	20
5	29

SOLUTION:

$\Delta y = 8 - 5 = 3$	$\Delta^2 y = 5 - 3 = 2$
$\Delta y = 13 - 8 = 5$	$\Delta^2 y = 7 - 5 = 2$
$\Delta y = 20 - 13 = 7$	$\Delta^2 y = 9 - 7 = 2$
∆y = 29 – 20 = 9	

The second finite differences are all 2, so the data represents a quadratic function

ANSWER:

Quadratic function

8.

x	y = f(x)
1	5
2	9
3	13
4	17
5	21

```
SOLUTION:

\Delta y = 9 - 5 = 4

\Delta y = 13 - 9 = 4

\Delta y = 17 - 13 = 4

\Delta y = 21 - 17 = 4
```

The first finite differences are all 4, so the data represents a linear function

ANSWER:

Linear function

For questions 9-12, the data sets shown in the tables represent quadratic functions. Use finite differences to determine the values of a, b, and c and then write the function in standard form.

10.

x	y = f(x)
0	3
1	6
2	13
3	24

SOLUTION:

$\Delta y = 6 - 3 = 3$	$\Delta^2 y = 7 - 3 = 4$
$\Delta y = 13 - 6 = 7$	$\Delta^2 \mathbf{y} = 11 - 7 = 4$
$\Delta y = 24 - 13 = 11$	

The second finite differences are all 4, so the data represents a quadratic function

 Δ^2 y = 2a = 4; a = 2

 $\Delta y = a + b = 3; 2 + b = 3; b = 1$

When x = 0, y = 3; c = 3

ANSWER:

 $y = 2x^2 + x + 3$

12.

x	y = f(x)
0	-6
1	-1
2	14
3	39

SOLUTION:

$\Delta y = -1 - (-6) = 5$	$\Delta^2 y = 15 - 5 = 10$
$\Delta y = 14 - (-1) = 15$	$\Delta^2 y = 25 - 15 = 10$
∆y = 39 – 14 = 25	

The second finite differences are all 10, so the data represents a quadratic function

$$\Delta^2 y = 2a = 10; a = 5$$

 $\Delta y = a + b = 5; 5 + b = 5; b = 0$
When x = 0, y = -6; c = -6
ANSWER:
y = 5x² - 6

For questions 13-16, the data sets shown in the tables represent quadratic functions. Use finite differences to determine f(0), the values of a, b, and c and then write the function in standard form.

14.

x	y = f(x)
0	?
1	3
2	16
3	41
4	78

SOLUTION:

$\Delta y = 16 - 3 = 13$	$\Delta^2 y = 25 - 13 = 12$
$\Delta y = 41 - 16 = 25$	$\Delta^2 y = 37 - 25 = 12$
∆y = 78 - 41 = 37	

The second finite differences are all 12, so the data represents a quadratic function

Since the second finite differences are all 12, the previous difference must also be 12.

$$a = 4, b = 3, c = 0$$

 $y = 4x^2 + 3x$

 $\Delta^{2}y = 13 - x = 12; x = 1$ 3 - 1 = 2; f(0) = 2 $\Delta^{2}y = 2a = 12; a = 6$ $\Delta y = a + b = 1; 6 + b = 1; b = -5$ When x = 0, y = 2; c = 2 *ANSWER*: f(0) = 2 a = 6, b = -5, c = 2 y = 6x² - 5x + 2

16.

x	y = f(x)
0	?
1	7
2	22
3	45
4	76

SOLUTION:

∆y = 22 - 7 = 15	$\Delta^2 y = 23 - 15 = 8$
$\Delta y = 45 - 22 = 23$	$\Delta^2 y = 31 - 23 = 8$
∆y = 76 - 45 = 31	

The second finite differences are all 8, so the data represents a quadratic function

Since the second finite differences are all 8, the previous difference must also be 8.

 $\Delta^2 y = 15 - x = 8; x = 7$ 7 - 7 = 0; f(0) = 0 $\Delta^2 y = 2a = 8; a = 4$ $\Delta y = a + b = 7; 4 + b = 7; b = 3$ When x = 0, y = 0; c = 0 *ANSWER*: f(0) = 0