Study Guide and Intervention

Geometric Sequences

Geometric Sequences A **geometric sequence** is a sequence in which each term after the first is the product of the previous term and a constant called the **constant ratio**.

nth Term of a Geometric Sequence

NAME

 $a_n = a_1 \cdot r^{n-1}$, where a_1 is the first term, r is the common ratio, and *n* is any positive integer

Example 1 Find the next two terms of the geometric sequence 1200, 480, 192,

Since
$$\frac{480}{1200} = 0.4$$
 and $\frac{192}{480} = 0.4$, the

sequence has a common ratio of 0.4. The next two terms in the sequence are 192(0.4) = 76.8 and 76.8(0.4) = 30.72.

Example 2 Write an equation for the nth term of the geometric sequence 3.6, 10.8, 32.4,

In this sequence $a_1 = 3.6$ and r = 3. Use the *n*th term formula to write an equation.

$$a_n = a_1 \cdot r^{n-1}$$
 Formula for *n*th term
$$= 3.6 \cdot 3^{n-1}$$
 $a_1 = 3.6, r = 3$

An equation for the *n*th term is $a_n = 3.6 \cdot 3^{n-1}$.

Exercises

Find the next two terms of each geometric sequence.

Find the first five terms of each geometric sequence described.

7.
$$a_1 = \frac{1}{9}, r = 3$$

Sopyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

8.
$$a_1 = 240, r = -\frac{3}{4}$$
 9. $a_1 = 10, r = \frac{5}{2}$

9.
$$a_1 = 10, r = \frac{5}{2}$$

Find the indicated term of each geometric sequence.

10.
$$a_1 = -10, r = 4, n = 2$$

10.
$$a_1 = -10, r = 4, n = 2$$
 11. $a_1 = -6, r = -\frac{1}{2}, n = 8$ **12.** $a_3 = 9, r = -3, n = 7$

12.
$$a_3 = 9, r = -3, n = 7$$

13.
$$a_4 = 16, r = 2, n = 10$$

13.
$$a_4 = 16, r = 2, n = 10$$
 14. $a_4 = -54, r = -3, n = 6$ **15.** $a_1 = 8, r = \frac{2}{3}, n = 5$

15.
$$a_1 = 8, r = \frac{2}{3}, n = 8$$

Write an equation for the nth term of each geometric sequence.

11-3 SI

NAME

Skills Practice

Geometric Sequences

Find the next two terms of each geometric sequence.

2. 6, 3,
$$\frac{3}{2}$$
, ...

Find the first five terms of each geometric sequence described.

7.
$$a_1 = 6, r = 2$$

8.
$$a_1 = -27, r = 3$$

9.
$$a_1 = -15, r = -1$$

10.
$$a_1 = 3, r = 4$$

11.
$$a_1 = 1, r = \frac{1}{2}$$

12.
$$a_1 = 216, r = -\frac{1}{3}$$

Find the indicated term of each geometric sequence.

13.
$$a_1 = 5, r = 2, n = 6$$

14.
$$a_1 = 18, r = 3, n = 6$$

15.
$$a_1 = -3, r = -2, n = 5$$

16.
$$a_1 = -20, r = -2, n = 9$$

17.
$$a_8$$
 for $-12, -6, -3, \dots$

18.
$$a_7$$
 for 80, $\frac{80}{3}$, $\frac{80}{9}$, ...

Write an equation for the nth term of each geometric sequence.

Find the geometric means in each sequence.

Lesson 11-3