Study Guide and Intervention Modeling Quadratic Functions

Example 1 Write a function rule.

Write an equation for the function. Use your model to predict the fuel economy at 80 miles per hour.

10-MILE PER HOUR INTERVAL, x	MILES PER HOUR	GASOLINE USAGE IN MILES PER GALLON, f(x)
0	20	24.5
1	30	28.0
2	40	30.0
3	50	30.2
4	60	28.8
5	70	25.8

Solution

Determine the finite differences in x-values and the Step 1 second finite differences in the values of f(x).

	10-MILE PER HOUR INTERVAL, x	MILES PER HOUR	GASOLINE USAGE IN MILES PER GALLON, f(x)
$\Delta x = 1 - 0 = 1$	0	20	24.5
$\Delta x = 1 - 0 - 1$ $\Delta x = 2 - 1 = 1$	1	30	28.0
$\Delta x = 2 - 1 - 1$ $\Delta x = 3 - 2 = 1$	2	40	30.0
$\Delta x = 3 - 2 - 1$ $\Delta x = 4 - 3 = 1$	3	50	30.2
$\Delta x = 5 - 4 = 1$	4	60	28.8
∆a - 5 - 4 = 1 \	5	70	25.8

Calculate the average of the second finite differences Step 2 and use this value to determine a in the quadratic function model, $f(x) = ax^2 + bx + c$.

$$2a = \frac{-1.5 - 1.8 - 1.6 - 1.6}{4} = -1.625$$

So $a = -.8125$

Step 3 Calculate the value of b.

The difference between the values of f(x) for x = 0 and 1 is (a + b)

a + b = 3.5 (-.8125) + b = 3.5 b = 3.5 + .8125 b = 4.3125

Determine the value of c. Step 4

> The value of f(0) = cf(0) = 24.5c = 24.5

Substitute the values of a, b, and c into the general form Step 5 to determine the function model.

 $f(x) = -.8125x^2 + 4.3125x + 24.5$

Exercises

For questions 1-3, use finite differences to determine if the data sets represent linear, exponential, quadratic, or other type of function.

1.

x	y = f(x)
1	7
2	16
3	27
4	40
5	55

2.

x	y = f(x)
1	-13
2	-28
3	-45
4	-64
5	-85

3.

x	y = f(x)
1	-4
2	-6
3	-6
4	-4
5	0

Study Guide and Intervention Writing Quadratic Functions (cont.)

Exercises

For questions 4-6, use the data set to generate a quadratic function that best models the data. 4. 5. 6.

x	y = f(x)
1	3
2	12
3	27
4	48
5	75

x	y = f(x)
1	-12
2	-20
3	-24
4	-24
5	-20

x	y = f(x)
1	1
2	-8
3	-23
4	=44
5	-71

For questions 7 and 8, use the following information.

SPEED OF A VEHICLE IN MILES PER HOURS, x	DISTANCE OF THE SKID IN FEET, f(x)
30	37.5
36	54
42	73.5
48	96
54	121.5
60	150

- 7. Use the table of data to determine the length of a skid mark of a vehicle that was traveling at a speed of 72 miles when it applied brakes.
- Use the table of data to determine how fast a 8. vehicle was traveling if the length of the skid mark was 24 feet.

For questions 9 and 10, use the following information.

TIME IN SECONDS, x	DISTANCE FROM THE GROUND IN METERS, f(x)
o	0
1	30
2	50
3	60
4	60
5	50

9. Use the data in the table to generate a quadratic function that models the data.

10. Use the data in the table to find the height of the ball after 7 seconds.