Study Guide and Intervention Writing Quadratic Functions

Example 1 Write a function rule.

Write an equation for the function.

x	y
1	1
2	9
3	23
4	43
5	69

Solution

Step 1 Determine the finite differences.

Determine whether or not the differences are constant. Step 2

 $\Delta x = 1$, so they are constant Δy is not constant

Step 3 Determine whether or not the second finite differences in successive y-values are constant.

$$\begin{array}{c} \Delta y = 9 - 1 = 8\\ \Delta y = 23 - 9 = 14\\ \Delta y = 43 - 23 = 20\\ \Delta y = 69 - 43 = 26\end{array} \begin{array}{c} \Delta^2 y = 14 - 8 = 6\\ \Delta^2 y = 20 - 14 = 6\\ \Delta^2 y = 26 - 20 = 6\end{array}$$

The second differences are all equal to 6 and are constant.

Exercises

For questions 1-3, use finite differences to determine if the data sets represent linear, exponential, quadratic, or other type of function.

1.

x	y = f(x)
1	5
2	11
3	21
4	35
5	53

2.

x	y = f(x)
1	5
2	9
3	16
4	29
5	52

3.

x y = f(x)1 5 2 12 3 31 4 68 5 129

Step 4 Calculate a, b, and c for the quadratic function $f(x) = ax^2 + bx + c$

> The second finite difference is 2a, so 2a = 6and a = 3.

The first difference between x = 0 and x = 1 is equal to a + b, so a + b = 2. Since a = 3, b must equal -1.

Since the second finite difference is 6, and the first finite difference between x = 0 and x = 1 is found by subtracting 6 from the first finite difference between x = 1 and x = 2, 8, then the finite difference becomes 2 (8 - 6 = 2). Therefore, 1 - c = 2; c = -1.

Write the function with the values for a, b, and Step 5 c.

 $f(x) = 3x^2 - x - 1$

5.

Study Guide and Intervention Writing Quadratic Functions (cont.)

Exercises

For questions 4-5, the data sets shown in the tables represent quadratic functions. Use finite differences to determine the values a, b, and c and then write the function in standard form.

4	
	-

x	y = f(x)
0	7
1	10
2	19
3	34

x	y = f(x)
0	-1
1	5
2	19
3	41

For questions 6-8, the data sets shown in the tables represent quadratic functions. Use finite differences to determine f(0), the values a, b, and c and then write the function in standard form.

6.

x	y = f(x)	
0	?	
1	-1	
2	5	
3	13	
4	23	

x	y = f(x)
0	?
1	3
2	16
3	41
4	78

7.

x	y = f(x)
0	?
1	-9
2	-8
3	-1
4	12

8.

9. Using the pattern of second differences, determine the number of dots that would appear in the 5th figure.

10. Write a quadratic function to represent the relationship between n and D(n).