Given the following information, determine which lines, if any, are parallel. State the postulate or theorem that justifies your answer.

12. $m \angle 3 + m \angle 6 = 180$

SOLUTION:

 $\angle 3$ and $\angle 6$ are consecutive interior angles of lines *u* and *v*. Since $m \angle 3 + m \angle 6 = 180$,

 $u \parallel v$ by the Converse of Consecutive Interior Angles Theorem.

ANSWER:

u || v; Consecutive Interior Angles Converse

13. ∠3 ≅ ∠5

SOLUTION:

 $\angle 3$ and $\angle 5$ are alternate interior angles of lines *u* and *v*. Since $\angle 3 \cong \angle 5$,

 $u \parallel v$ by the Converse of Alternate Interior Angles Theorem.

ANSWER:

 $u \parallel v$; Alternate Interior Angles Converse

Find x so that $m \parallel n$. Identify the postulate or theorem you used.

$$(3x - 14)^{\circ} \xrightarrow{m} 16.$$

SOLUTION:

By the Alternate Exterior Angles Converse, if 3x - 14 = 2x + 25, then $m \parallel n$.

Solve for x. 3x - 14 = 2x + 25 3x - 2x - 14 = 2x - 2x + 25 x - 14 + 14 = 25 + 14x = 39

ANSWER:

39; Alt. Ext. \angle s Conv.

<u>3-5 Proving Lines Parallel</u>

20.

SOLUTION:

Use the Vertical Angle Theorem followed by Consecutive Interior Angles Converse to find *x*.

Then by Consecutive Interior Angles Converse, if 3x + 2x + 45 = 180, then $m \parallel n$.

Solve for x.

$$3x + 2x + 45 = 180$$

 $6x + 45 = 180$
 $6x + 45 - 45 = 180 - 45$
 $6x = 135$
 $\frac{6x}{6} = \frac{135}{6}$
 $x = 27$

ANSWER:

27; Vert. \angle s Thm and Consec. Int. \angle s Conv.

23. **PROOF** Copy and complete the proof of Theorem 3.6.

Statements	Reasons
a. <u>?</u>	a. Given
b. ∠2 and ∠3 form a linear pair.	b?
c. <u>?</u>	c?
d. ∠1 ≅ ∠3	d?
e. ℓ m	e3

SOLUTION:

Statements	Reasons
 a. ∠1 and ∠2 are supplementary. b. ∠2 and ∠3 form a linear pair. c. ∠2 and ∠3 are supplementary. d. ∠1 ≅ ∠3 e. ℓ m 	 a. Given b. Def. of linear pair. c. Suppl. Thm. d. ≅ Suppl. Thm. e. Converse of Corr. ∠s Post.

ANSWER:

Statements	Reasons
 a. ∠1 and ∠2 are supplementary. b. ∠2 and ∠3 form a linear pair c. ∠2 and ∠3 are supplementary. d. ∠1 ≅ ∠3 e. ℓ m 	 a. Given b. Def. of linear pair. c. Suppl. Thm. d. ≅ Suppl. Thm. e. Converse of Corr. ∠s Post.

PROOF Write a two-column proof for each of the following.

26. Given: $WX \parallel YZ$ $\angle 2 \cong \angle 3$

Prove: $\overline{WY} \parallel \overline{XZ}$

SOLUTION:

Proof:

Statements (Reasons)

1. $\overline{WX} || \overline{YZ}, \ \angle 2 \cong \angle 3$ (Given) 2. $\angle 2$ and $\angle 4$ are supplementary. (Cons. Int. $\angle s$) 3. $m \angle 2 + m \angle 4 = 180$ (Def. of suppl. $\angle s$) 4. $m \angle 3 + m \angle 4 = 180$ (Substitution) 5. $\angle 3$ and $\angle 4$ are supplementary. (Def. of suppl. $\angle s$) 6. $\overline{WY} || \overline{XZ}$ (If cons. int. $\angle s$ are suppl., then lines are ||.)

ANSWER:

Proof:

Statements (Reasons)

1. $\overline{WX} || \overline{YZ}, \ \angle 2 \cong \angle 3$ (Given) 2. $\angle 2$ and $\angle 4$ are supplementary. (Cons. Int. $\angle s$) 3. $m \angle 2 + m \angle 4 = 180$ (Def. of suppl. $\angle s$) 4. $m \angle 3 + m \angle 4 = 180$ (Substitution) 5. $\angle 3$ and $\angle 4$ are supplementary. (Def. of suppl. $\angle s$) 6. $\overline{WY} || \overline{XZ}$ (If cons. int. $\angle s$ are suppl., then lines are ||.)