Write an equation in slope-intercept form of the line having the given slope and *y*-intercept or given points. Then graph the line.

14. *m*: -7, *b*: -4

SOLUTION:

The slope-intercept form of a line of slope m and y-intercept b is given by y = mx + b.

Here, m = -7 and y-intercept = -4. y = mx + b Slope-intercept form y = -7x + (-4) Substitution. y = -7x - 4 Simplify.

So, the equation of the line is y = -7x - 4.

Graph the *y*-intercept -4 Use the slope -7 to find another point 7 units up and 1 unit right. Then draw a line through the two points.

ANSWER:

y = -7x -	4	y		
	8			
	-4			
-8-6-4	-20	2	4 6	8 X
	-4 -6			

Write an equation in point-slope form of the line having the given slope that contains the given point. Then graph the line.

20. m = 4, (-4, 8)

SOLUTION:

The point-slope form of a line is $y - y_1 = m(x - x_1)$ where *m* is the slope and (x_1, y_1) is a point on the line.

Here, m = 4 and $(x_1, y_1) = (-4, 8)$. $y - y_1 = m(x - x_1)$ Point-Slope form y - 8 = 4(x - (-4)) Substitution. y - 8 = 4(x + 4) Simplify.

Graph (-4, 8). Use the slope 4 to find another point 4 units up and 1 unit right. Then draw a line through the two points.

	7	(-3,	12	y	
	(-	4, 8)	-8		
/			-4		
-	4	-2	0	2	2 x
			-4		

ANSWER:

22.
$$m = \frac{5}{7}, (-2, -5)$$

SOLUTION:

The point-slope form of a line is $y - y_1 = m(x - x_1)$ where *m* is the slope and (x_1, y_1) is a point on the line.

$$m = \frac{5}{7} \text{ and } (x_1, y_1) = (-2, -5)$$

y - y_1 = m(x - x_1) Point-Slope form
y - (-5) = $\frac{5}{7}(x - (-2))$ Substitution.
y + 5 = $\frac{5}{7}(x + 2)$ Simplify.

Graph (-2, -5). Use the slope $\frac{5}{7}$ to find another point 5 units up and 7 unit right. Then draw a line through the two points.

ANSWER:

Write an equation of the line through each pair of points in slope-intercept form.

26. (2, -1) and (2, 6)

SOLUTION:

Use the slope formula to find the slope of the line.

Let
$$(x_1, y_1) = (2, -1)$$
 and $(x_2, y_2) = (2, 6)$.
 $m = \frac{y_2 - y_1}{x_2 - x_1}$
 $= \frac{6 - (-1)}{2 - 2}$
 $= \frac{7}{0}$

Division of any number by zero is undefined. So, the slope of the line is undefined. So, the line is a vertical line. The *x*-coordinates of both the points are 2. So, the equation of the line is x = 2.

ANSWER:

x = 2

28. (0, 5) and (3, 3)

SOLUTION:

Use the slope formula to find the slope of the line. Let $(x_1, y_1) = (0, 5)$ and $(x_2, y_2) = (3, 3)$.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$= \frac{3 - 5}{3 - 0}$$
$$= \frac{-2}{3}$$
$$= -\frac{2}{3}$$

Use the slope and one of the points to write the equation of the line in point-slope form.

The point-slope form of a line is $y - y_1 = m(x - x_1)$

where *m* is the slope and (x_1, y_1) is a point on the line.

Here,
$$m = -\frac{2}{3}$$
 and $(x_1, y_1) = (3, 3)$.
 $y - y_1 = m(x - x_1)$ Point-Slope form
 $y - 3 = -\frac{2}{3}(x - 3)$ Substitution.
 $y - 3 = -\frac{2}{3}x + 2$ Simplify.
 $y - 3 + 3 = -\frac{2}{3}x + 2 + 3$ Add 3 to each side.
 $y = -\frac{2}{3}x + 5$ Simplify.

$$y = -\frac{2}{3}x + 5$$

Write an equation in slope-intercept form for each line described.

37. passes through (-7, -4), perpendicular to $y = \frac{1}{2}x + 9$

SOLUTION:

The slope of the line $y = \frac{1}{2}x + 9$ is $\frac{1}{2}$. So, the slope of the line perpendicular to the given line is -2. Use the slope and the point to write the equation of the line in point-slope form.

The point-slope form of a line is $y - y_1 = m(x - x_1)$

where *m* is the slope and (x_1, y_1) is a point on the line.

Here, m = -2 and $(x_1, y_1) = (-7, -4)$.

 $\begin{array}{ll} y-y_1=m(x-x_1) & \text{Point-Slope form} \\ y-(-4)=-2(x-(-7)) & \text{Substitution.} \\ y+4=-2x-14 & \text{Simplify.} \\ y+4-4=-2x-14-4 & \text{Subtract 4 to each side.} \\ y=-2x-18 & \text{Simplify.} \end{array}$

ANSWER:

y = -2x - 18

41. **PLANNING** Karen is planning a graduation party for the senior class. She plans to rent a meeting room at the convention center that costs \$400. There is an additional fee of \$10.50 for each person who attends the party.

a. Write an equation to represent the cost *y* of the party if *x* people attend.

b. Graph the equation.

c. There are 285 people in Karen's class. If $\frac{2}{3}$ of

these people attend, how much will the party cost? **d.** If the senior class has raised \$3500 for the party, how many people can attend?

SOLUTION:

a. The rent for the room is \$400 and there is an additional fee of \$10.50 for each person who attends the party. So, if *x* is the number of people attending the party and *y* is the total cost then the equation is y = 10.5x + 400.

b. Draw the line representing the equation y = 10.5x + 400 on a coordinate plane.

3-4 Equations of Lines

c. Two-thirds of 285 people, attended the party. That is, $\frac{2}{3}(285) = 190$ people attended the party. Substitute x = 190 in the equation. y = 10.5(190) + 400= 2395The party expenses will cost \$2395.

```
d. Substitute y = 3500 and solve for x.

3500 = 10.50x + 400

3100 = 10.50x

295.24 \approx x
```

So, a total of 295 people can attend the party.

ANSWER:

