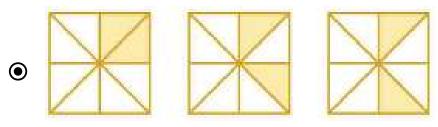
INDUCTIVE REASONING AND CONJECTURE, AND LOGIC

INDUCTIVE REASONING

- Reasoning that uses examples to come to a conclusion; think patterns
- A concluding statement based on inductive reasoning is called a conjecture; think educated guess

 ${\scriptstyle \odot}$ The sum of two even numbers

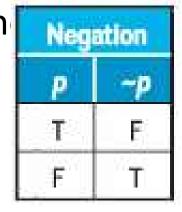
 \odot The relationship between AB and EF if AB = CD and CD = EF


COUNTEREXAMPLES

● A false example; it can be a number, a drawing, or a statement.

 \odot Ex. - 2x > x; false if x < 0

● 3, 3, 6, 9, 15,... what is the next number?

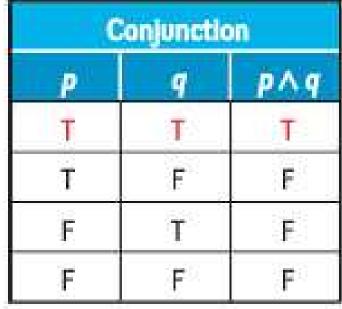


- What is next in the sequence?
- If in $\triangle ABC$, $(AB)^2 + (BC)^2 = (AC)^{2}$, then $\triangle ABC$ is a right triangle

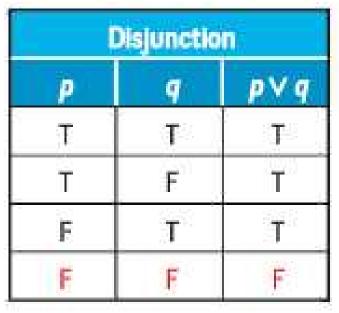
LOGIC

- Statement is a sentence that is either true or false.
- Truth value of a statement is either true (T) or false (F)
- Negation of a statement has the opposite meaning and truth value;

written p, read n



LOGIC


• A compound statement using the word and is called a conjunction; written $p \wedge q$, read p and q

Occupient of the statements are true
 Interview of the statements are true
 Interview of the statement of the s

LOGIC

- \odot A compound statement using the word or is called a disjunction; written p~V~q , read p or q
- Disjunctions are only false when both statements are false

TRUTH TABLE

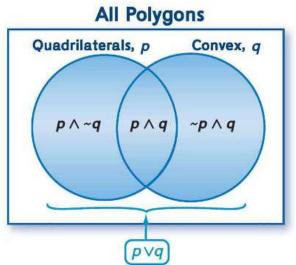
- Truth tables organize the values of statements
- Start by making columns with heading that include each original statement, any negations of the statements, and the compound statements
- Next, determine all of the possible combinations of truth values... 2^x, where x is the number of original statements

TRUTH TABLE

• Use the truth values to determine each part of the compound statement to determine the truth value of the statement.

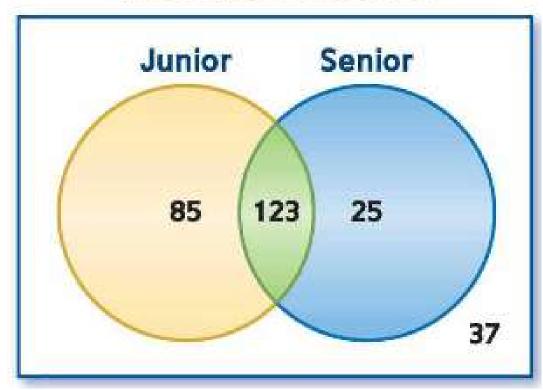
VENN DIAGRAMS

Conjunctions and disjunctions can also be illustrated with Venn diagrams.



 Rectangles are located at the intersection of the set of quadrilaterals and the set of convex polygons

VENN DIAGRAMS


- A disjunction is represented by the union of the two sets; all polygons that are quadrilaterals, convex or both.
- The disjunction includes three regions: quadrilaterals that are not convex, convex polygons that are not quadrilaterals, and polygons that are both quadrilaterals and convex

EXAMPLES Spanish Club Meeting May June 14 5 6 2

Prom Attendance

p: \overrightarrow{DB} is the angle bisector of ∠*ADC*. *q*: Points *C*, *D*, and *B* are collinear. *r*: $\overrightarrow{AD} \cong \overrightarrow{DC}$

QUESTIONS

How are truth tables useful in the real world?
How can you as a student use Venn diagrams in your life?

